The second half of the 20th century and the beginning of the 21st century have witnessed important changes in ecology, climate and human behaviour that favour the development of urban pests. Most alarmingly, urban planners are faced now with the dramatic expansion of urban sprawl, where the suburbs of our cities are growing into the natural habitats of ticks, rodents and other pests. Also, many city managers now erroneously assume that pest-borne diseases are relics that belong to the past.

All these changes make timely a new analysis of the direct and indirect impacts of present-day urban pests on health. Such an analysis should lead to the development of strategies to manage them and reduce the risk of exposure. To this end, WHO has invited international experts in various fields – pests, pest-related diseases and pest management – to provide evidence on which to base policies. These experts contributed to the present report by identifying the public health risk posed by various pests and appropriate measures to prevent and control them. This book presents their conclusions and formulates policy options for all levels of decision-making to manage pests and pest-related diseases in the future.
Public Health Significance of Urban Pests

Xavier Bonnefoy
Helge Kampen
Kevin Sweeney
Abstract

The second half of the 20th century and the beginning of the 21st century have witnessed important changes in ecology, climate and human behaviour that favour the development of urban pests. Most alarmingly, urban planners are faced now with the dramatic expansion of urban sprawl, where the suburbs of our cities are growing into the natural habitats of ticks, rodents and other pests. Also, many city managers now erroneously assume that pest-borne diseases are relics that belong to the past.

All these changes make timely a new analysis of the direct and indirect impacts of present-day urban pests on health. Such an analysis should lead to the development of strategies to manage them and reduce the risk of exposure. To this end, WHO has invited international experts in various fields – pests, pest-related diseases and pest management – to provide evidence on which to base policies. These experts contributed to the present report by identifying the public health risk posed by various pests and appropriate measures to prevent and control them. This book presents their conclusions and formulates policy options for all levels of decision-making to manage pests and pest-related diseases in the future.

Keywords

PEST CONTROL - methods
INSECT CONTROL - methods
URBAN HEALTH
URBAN POPULATION
ENVIRONMENTAL EXPOSURE
CITY PLANNING
PUBLIC HEALTH
HEALTH POLICY

Contents

Foreword VII
Executive summary IX
Introduction 1
1. Allergic asthma 7
2. Cockroaches 53
3. House dust mites 85
4. Bedbugs 131
5. Fleas 155
6. Pharaoh ants and fire ants 175
7. Flies 209
8. Birds 239
9. Human body lice 289
10. Ticks 304
11. Mosquitoes 347
12. Commensal rodents 387
13. Non-commensal rodents and lagomorphs 421
14. Pesticides: risks and hazards 477
15. Integrated pest management 543
Annex 1. Abbreviations 563
Annex 2. Working Group 565
10. Ticks

Howard S. Ginsberg and Michael K. Faulde

Summary

The most common vector-borne diseases in both Europe and North America are transmitted by ticks. Lyme borreliosis (LB), a tick-borne bacterial zoonosis, is the most highly prevalent. Other important tick-borne diseases include TBE (tick-borne encephalitis) and Crimean-Congo haemorrhagic fever in Europe, Rocky Mountain spotted fever (RMSF) in North America, and numerous less common tick-borne bacterial, viral, and protozoan diseases on both continents. The major etiological agent of LB is *Borrelia burgdorferi* in North America, while in Europe several related species of *Borrelia* can also cause human illness. These *Borrelia* genospecies differ in clinical manifestations, ecology (for example, some have primarily avian and others primarily mammalian reservoirs), and transmission cycles, so the epizootiology of LB is more complex in Europe than in North America.

Ticks dwell predominantly in woodlands and meadows, and in association with animal hosts, with only limited colonization of human dwellings by a few species. Therefore, suburbanization has contributed substantially to the increase in tick-borne disease transmission in North America by fostering increased exposure of humans to tick habitat. The current trend toward suburbanization in Europe could potentially result in similar increases in transmission of tick-borne diseases. Incidence of tick-borne diseases can be lowered by active public education campaigns, targeted at the times and places of greatest potential for encounter between humans and infected ticks. Similarly, vaccines (e.g., against TBE) are most effective when made available to people at greatest risk, and for high-prevalence diseases such as LB. Consultation with vector-borne disease experts during the planning stages of new human developments can minimize the potential for residents to encounter infected ticks (e.g., by appropriate dwelling and landscape design). Furthermore, research on tick vectors, pathogens, transmission ecology, and on geographic distribution, spread, and management of tick-borne diseases can lead to innovative and improved methods to lower the incidence of these diseases. Surveillance programs to monitor the distribution and spread of ticks, associated pathogens, and their reservoirs, can allow better-targeted management efforts, and provide data to assess effectiveness and to improve management programs.
10.1. Introduction

Ticks transmit more cases of human disease than any other arthropod vector in Europe and North America. They are also important worldwide as disease vectors to people and domestic animals, and they cause substantial economic losses, both by transmitting disease and by direct negative effects on cattle (Jongejan & Uilenberg, 2004). Lyme borreliosis (LB), in particular, is the most commonly reported vector-borne disease in both Europe and North America (Steere, Coburn & Glickstein, 2005). In Europe, Tick-Borne Encephalitis is also prevalent, especially in central and eastern Europe, while in North America, Rocky Mountain spotted fever (RMSF), caused by a rickettsial agent, is responsible for a few hundred to over a thousand cases a year. In addition to their importance as disease vectors, some hard tick species can directly cause adverse effects, such as tick paralysis, a toxicosis (systemic poisoning) due to toxic salivary proteins. Similarly, soft ticks can provoke severe allergenic bite reactions in people (IgE-mediated type-I allergy).

The response to tick-borne diseases (TBDs) in the United States has been substantial, including federally sponsored research programmes, public health programmes within individual states (partly funded by the CDC [United States Centers for Disease Control and Prevention]) and several smaller programmes funded by states, localities and non-profit-making organizations. States with a high incidence of disease have numerous public education programmes, and several novel methods of tick and disease management have been developed (Stafford & Kitron, 2002). However, coordination and evaluation of programmes is spotty, and the incidence of disease remains high in many locales and has increased nationwide (Piesman & Gern, 2004). Ecological differences in transmission dynamics from site to site mean that the approach to management needs to be tailored to conditions at each locale. Methods for developing effective IPM programmes and evaluations of efficacy remain high priorities (Ginsberg & Stafford, 2005).

The situation in Europe is different in that national reporting strategies differ among countries (Table 10.1), and little has been done to routinely implement measures that protect individuals against tick bites or TBDs. Some notable exceptions are vaccination against TBE (Nuttall & Labuda, 2005) and the use of skin repellents in some areas. Fabrics impregnated with acaricides (agents that kill ticks and mites), such as permethrin, are widely unknown and difficult to procure, even for personnel occupationally exposed to tick-infested areas of endemic TBDs. So far, few research efforts have been initiated to reduce tick populations by ecological changes, biological control or IPM.

10.2. Ticks of Europe and North America

Ticks are arachnids (the class Arachnida includes spiders, scorpions, ticks and mites) in the subclass Aracari, which includes mites and ticks. Ticks are families of ticks (Barker & Murrell, 2004): the hard ticks, Ixodidae (713 species), which includes most ticks of medical importance to people; the soft ticks, Argasidae (185 species), which includes a few species that transmit diseases to humans; and Nuttalliellidae, which includes just one species from Africa with no known medical importance.

Table 10.1. TBDs in Europe to be notified to national health authorities, as of 2005

<table>
<thead>
<tr>
<th>Country/locale</th>
<th>TBE/CEE</th>
<th>Lyme borreliosis</th>
<th>Other diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>- (Endemic)</td>
<td>+ (Endemic)</td>
<td>-</td>
</tr>
<tr>
<td>Austria</td>
<td>+ (Only meningencephalitis caused by Lyme borreliosis)</td>
<td>+ (Endemic)</td>
<td>-</td>
</tr>
<tr>
<td>Belarus</td>
<td>+ (Endemic)</td>
<td>+ (Endemic)</td>
<td>Tularaemia, O fever, tick-borne Haemorrhagic fevers</td>
</tr>
<tr>
<td>Belgium</td>
<td>- (Endemic)</td>
<td>- (Endemic)</td>
<td>-</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>CCHF</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>+ (Endemic) status unclear</td>
<td>+ (Endemic)</td>
<td>CCHF</td>
</tr>
<tr>
<td>Croatia</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>Tick-borne tularaemia, ehrlichiosis, human granulocytic anaplasmosis</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Denmark</td>
<td>- (Not endemic)</td>
<td>+ (Endemic)</td>
<td>Neuroborreliosis only</td>
</tr>
<tr>
<td>Estonia</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>Tick-borne tularaemia</td>
</tr>
<tr>
<td>Finland</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>Tick-borne tularaemia</td>
</tr>
<tr>
<td>France</td>
<td>- (Endemic)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Germany</td>
<td>+ (Endemic)</td>
<td>+ (Endemic)</td>
<td>Tick-borne tularaemia</td>
</tr>
<tr>
<td>Greece</td>
<td>- (Not endemic)</td>
<td>+ (Endemic)</td>
<td>Louping Ill</td>
</tr>
<tr>
<td>Hungary</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ireland</td>
<td>- (Not endemic)</td>
<td>- (Endemic)</td>
<td>Neuroborreliosis only</td>
</tr>
<tr>
<td>Italy</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Latvia</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>Tick-borne tularaemia</td>
</tr>
<tr>
<td>Lithuania</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>Tick-borne tularaemia</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>- (Not endemic)</td>
<td>+ (Endemic)</td>
<td>Tick-borne tularaemia</td>
</tr>
<tr>
<td>Netherlands</td>
<td>- (Endemic)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Norway</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Poland</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Portugal</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Republic of Moldova</td>
<td>- (Endemic)</td>
<td>- (Endemic)</td>
<td>-</td>
</tr>
<tr>
<td>Romania</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>MSF</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>Tularaemia, O fever, tick-borne Haemorrhagic fevers</td>
</tr>
<tr>
<td>Serbia</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Slovakia</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Slovenia</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spain</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>HSE</td>
</tr>
<tr>
<td>Sweden</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Switzerland</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>The former Yugoslav Republic of Macedonia</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ukraine</td>
<td>+ (Endemic)</td>
<td>-</td>
<td>Tularaemia, O fever, tick-borne Haemorrhagic fevers</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>- (Endemic) Scotland only</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: - not notifiable disease; + disease notifiable by national health organisations.

Source: The information in this table has been provided by M.K. Faulde and is based on official civil and military country sources.
Endemic tick species in Europe can be peridomestic or can be associated with pets and farm animals (Table 10.2). European ticks that can infest buildings in urban environments include: the ixodid brown dog tick, *Rhipicephalus sanguineus*, as far north as southern Germany; and the argasids: the European pigeon tick, *Argas reflexus* (associated with pigeons), and the fowl tick, *Argas persicus* (associated with poultry in south-eastern Europe). Long-term infestations with brown dog ticks can occur in human dwellings, if control efforts are neglected (Gothe, 1999). The only survey thus far for European pigeon ticks was performed in the city of Berlin, where more than 200 infested buildings were discovered between 1989 and 1998 (Dautel, Scheurer & Kahl, 1999). Most of the infestations were found in older buildings constructed before 1918. Control is difficult and requires professional expertise and time.

Recent studies in Germany have shown increases in urban and periurban collections of castor-bean ticks, *Ixodes ricinus* (Mehnert, 2004). According to studies conducted in north-eastern Germany, Lyme borreliosis (LB) is most often acquired in city parks and gardens near forests (Ammon, 2001; Anonymous, 2005a). Other ticks, such as the soft tick *Ornithodoros erraticus*, and the hard ticks *Dermacentor spp.*, *Hyalomma spp.* and *Hemaphysalis spp.*, are associated with pigs, sheep and cattle and are known vectors of both animal and human disease agents. They usually do not infest houses, but can be found in stables and in houses that incorporate stables.

The most common hard ticks that regularly bite people in North America (Table 10.3) include: the black-legged or deer tick, *Ixodes scapularis*, in eastern and central North America; the western black-legged tick, *I. pacificus*, in west coastal areas; the American dog tick, *Dermacentor variabilis*, in the east and Midwest; the Rocky Mountain wood tick, *Dermacentor andersonii*, in the Rocky Mountain region; the Pacific Coast tick, *D. occidentalis*, on the Pacific coast; and the lone star tick, *Amblyomma americanum*, in eastern and central North America. The brown dog tick attaches to dogs and can be found in the home, but rarely attaches to people. The primary soft ticks that affect people are *Ornithodoros spp.* in western areas.

These ticks are found primarily in natural areas and are often encountered by recreational users of parks and woodlands (Ginsberg & Ewing, 1989). However, increasing suburbanization around major urban centres has resulted in substantial contact between people and ixodid ticks, and most disease transmission from ticks to people occurs in the peridomestic environment (Mauฝน et al., 1991). Some nidicolous species (including soft ticks, such as *Ornithodoros spp.*) are found in animal nests in rustic cabins and can transmit pathogens (such as relapsing fever borreliae) to recreational users of these dwellings (Barbour, 2005).

10.3. Tick-borne diseases

The epidemiology and distribution of TBDs in Europe and North America are generally similar, but differ in some important details. In Europe, 31 viral, 14 bacterial, and 5 *Babesia* species are known endemic tick-borne pathogens of people (Table 10.4). Among
Table 10.3. Tick vectors of medical importance that are endemic in North America

<table>
<thead>
<tr>
<th>Species</th>
<th>Geographical distribution</th>
<th>Habitat</th>
<th>Host</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deer tick (Dermacentor variabilis)</td>
<td>Eastern North America and northern Midwest</td>
<td>Closed-canopy woodlands; adults extend into open habitats</td>
<td>Broad range of hosts, including mammals, birds and reptiles; adults on large mammals, such as deer; three-host tick</td>
<td>Especially common in north-eastern United States</td>
</tr>
<tr>
<td>Western black-legged tick (Dermacentor andersoni)</td>
<td>Western North America</td>
<td>Woodlands, scrub and open habitats</td>
<td>Broad range of hosts; adults on large mammals, such as deer; immatures on lizards, birds, and diverse mammals; three-host tick</td>
<td>Immatures more common on lizards than on rodents</td>
</tr>
<tr>
<td>American dog tick (Dermacentor variabilis)</td>
<td>Eastern and central North America, especially the Carolinas to Oklahoma</td>
<td>Woodlands, shrublands and grasslands, especially along animal trails</td>
<td>Adults on large mammals; immatures on small mammals, such as rodents; three-host tick</td>
<td>Can be found in urban parks as well as natural areas</td>
</tr>
<tr>
<td>Rocky Mountain wood tick (Dermacentor variabilis)</td>
<td>Rocky Mountain region</td>
<td>Woodlands, low shrub vegetation and grasslands</td>
<td>Adults on large mammals; immatures on small mammals; three-host tick</td>
<td>—</td>
</tr>
<tr>
<td>Pacific Coast tick (Dermacentor occidentalis)</td>
<td>Pacific region of North America</td>
<td>Woodlands</td>
<td>Adults on large mammals; immatures on small mammals; three-host tick</td>
<td>—</td>
</tr>
<tr>
<td>Lone star tick (Amblyomma americanum)</td>
<td>South-eastern and south-central North America, expanding northward</td>
<td>Woodlands, shrublands and grasslands</td>
<td>All three life stages attach readily to large mammals, especially deer; immatures also on birds; three-host tick</td>
<td>Extremely aggressive and fast-moving tick</td>
</tr>
<tr>
<td>Ornithodoros spp.</td>
<td>Western North America</td>
<td>Rodent nests</td>
<td>Generally rodents, but can attach to a variety of mammals</td>
<td>Can bite human beings who utilize rustic cabins with rodent nests</td>
</tr>
</tbody>
</table>

* Same ticks, called one-host ticks, feed on only one host throughout all three stages of life (larval, nymphal and adult). Other ticks, called two-host ticks, feed and remain on the first host during the larval and nymphal stages of life, and then drop off and attach to a different host as an adult. Finally, three-host ticks feed, drop off and reattach progressively to larger hosts subsequently to each moult.

Note: —: no remarks.

Source: Data presented have been collected by the authors from numerous sources.

Several isolated regional studies in Europe show that tick abundance is increasing regionally while TBDs are simultaneously emerging and spreading geographically. The changing urban landscape in Germany, specifically in the federal state of Brandenburg, where LB has been a notifiable disease since 1996, shows a steady increase in exposure to castor- bean ticks. Other studies have shown that urban parks in Berlin and Munich have growing tick populations and contribute to a growing number of cases of LB. In the Czech Republic, castor-bean tick populations spread an average of 161 meters into higher altitude sites (from about 780m to 960m above sea level) during the last 30 years. T his resulted in exposure to ticks and TBDs in higher mountainous areas that were formerly not endemic for castor-bean ticks and diseases associated with them. Since the 1990s at least two TBDs, TBE and Mediterranean spotted fever (MSF), have been reported to be extending their geographical ranges. T BE is spreading geographically into the north-eastern parts of Germany. MSF, transmitted by the brown dog tick, is reportedly spreading northwards along the French Rhone Valley, as far north as Belgium, where the first autochthonous (locally acquired) human cases of MSF were recently reported. Data from the Baltic states show that landscape-level ecological changes (resulting from agricultural practices) have led to increases in ectopoes (the smallest ecologically distinct features in a landscape mapping and classification system) suitable for tick infestation. Finally, the reported increase in incidence of TBDs may in part result from increased awareness of TBDs, better diagnostic tools, and markedly higher leisure and sporting activities that result in increased exposure to endemic disease foci.

The most common TBD in N orth America, as in Europe, is Lyme borreliosis (also called Lyme disease). Other important TBDs (Sonenshine, Lane & N icholson, 2002) include RMSF, human monocytic ehrlichiosis (HME), human granulocytic anaplasmosis (HGA), Q fever, and tularemia (Table 10.5). A ll of these diseases are notifiable in the United States (G roscede et al., 2004).

European TBDs, only TBE is a widely notifiable disease (Table 10.1), with more than 10 000 clinical cases annually. D etailed epidemiological information is not available on other TBDs despite the fact that the most frequent TBD in Europe is LB (with possibly hundreds of thousands of clinical cases a year). Germany alone claims 20 000–60 000 cases a year (O’Connell et al., 1998; W agner, 1999). Y early rates of incidence in hyperendemic foci (sites where disease organisms exist in host populations at very high rates) can exceed 300 cases per 100 000 population, with average occupational seroprevalence rates of up to 48% in forest workers. O ther TBDs occur, but their rates of incidence remain largely unknown.

Less common or non-emerging TBDs in N orth America include such infections as b aebiosis, which is caused by the protozoan Babesia microti and is transmitted by the black-legged tick, primarily in southern New England and mid-A tlantic coastal areas (S pielman, 1976; S pielman et al., 1979). P owassan encephalitis is a rarely reported viral disease related to European TBE (E bel, S pielman & T elford, 2001). C olorado tick fever (CT F) is a viral disease transmitted by the Rocky Mountain wood tick in the Rocky M ountain region (M cLean et al., 1981). T he lone star tick transmits Ehrlichia ewingii, which causes human ehrlichiosis. Q fever, caused by Coxiella burnetii, is primarily a liv es-tock disease (M eQuiston & C hilds, 2002). T ick-borne relapsing fever, caused by several Borrelia spp. and transmitted by associated Ornithodoros spp., is primarily contracted by people in intermittently used recreational cabins in wild areas in western N orth America. I mportant vectors include Ornithodoros hermsii (which transmits the spirochete Borrelia hermsii), Ornithodorosarkeri (which transmits Borrelia parkeri), and Ornithodoros turicata (which transmits Borrelia turicatae) (B arbour, 2005). T ularemia, caused by the bacterium Francisella tularensis, is usually acquired by rabbit hunters that handle infected rabbits (especially in eastern N orth America), but is sometimes transmitted by ticks (especially in western states).
10.4. Lyme borreliosis

The clinical features, diagnosis, treatment, pathology, microbiology, ecology, surveillance and management of LB have been extensively reviewed (Ginsberg, 1993; Gray et al., 2002; Piesman & Gern, 2004; Steere, Coburn & Glickstein, 2005). Features relevant to current trends in LB epidemiology in Europe and North America are summarized below.

<table>
<thead>
<tr>
<th>Tick genus</th>
<th>Tick species</th>
<th>Common name</th>
<th>Viral pathogens</th>
<th>Bacterial and parasitic pathogens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amblyomma</td>
<td>marginatus</td>
<td>Ornate sheep tick</td>
<td>TBEV, Bhanjavirus, Eriate virus, Dociophylophthora, Coonvirus, Ompfivirus</td>
<td>B. burgdorferi s.l.</td>
</tr>
<tr>
<td>Neotoma</td>
<td>tarsalis</td>
<td>Ornate cow tick</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dermacentor</td>
<td>marginatus</td>
<td>Ornate sheep tick</td>
<td>TBEV, Bhanjavirus, Eriate virus, Dociophylophthora, Coonvirus, Ompfivirus</td>
<td>B. burgdorferi s.l.</td>
</tr>
<tr>
<td>Amblyomma</td>
<td>tarsalis</td>
<td>Ornate cow tick</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Neotoma</td>
<td>canis</td>
<td>Canis tick</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dermacentor</td>
<td>marginatus</td>
<td>Ornate sheep tick</td>
<td>TBEV, Bhanjavirus, Eriate virus, Dociophylophthora, Coonvirus, Ompfivirus</td>
<td>B. burgdorferi s.l.</td>
</tr>
<tr>
<td>Neotoma</td>
<td>canis</td>
<td>Canis tick</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dermacentor</td>
<td>marginatus</td>
<td>Ornate sheep tick</td>
<td>TBEV, Bhanjavirus, Eriate virus, Dociophylophthora, Coonvirus, Ompfivirus</td>
<td>B. burgdorferi s.l.</td>
</tr>
<tr>
<td>Neotoma</td>
<td>canis</td>
<td>Canis tick</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dermacentor</td>
<td>marginatus</td>
<td>Ornate sheep tick</td>
<td>TBEV, Bhanjavirus, Eriate virus, Dociophylophthora, Coonvirus, Ompfivirus</td>
<td>B. burgdorferi s.l.</td>
</tr>
<tr>
<td>Neotoma</td>
<td>canis</td>
<td>Canis tick</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dermacentor</td>
<td>marginatus</td>
<td>Ornate sheep tick</td>
<td>TBEV, Bhanjavirus, Eriate virus, Dociophylophthora, Coonvirus, Ompfivirus</td>
<td>B. burgdorferi s.l.</td>
</tr>
<tr>
<td>Neotoma</td>
<td>canis</td>
<td>Canis tick</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dermacentor</td>
<td>marginatus</td>
<td>Ornate sheep tick</td>
<td>TBEV, Bhanjavirus, Eriate virus, Dociophylophthora, Coonvirus, Ompfivirus</td>
<td>B. burgdorferi s.l.</td>
</tr>
<tr>
<td>Neotoma</td>
<td>canis</td>
<td>Canis tick</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: —: no remark; SINV: Sindbis virus; WNV: West Nile virus; TBEV: tick-borne encephalitis virus; CHFV: Crimean-Congo haemorrhagic fever virus; OHFV: Omsk haemorrhagic fever virus.

Source: Data presented have been collected by the authors from numerous sources.

The following sections provide more comprehensive treatments of the most prevalent TBDs in Europe and North America: LB on both continents, TBE in Europe, and RMSF in North America.
B. garinii, and Borrelia spielmanii (Richter et al., 2006). B. valaisiana and Borrelia lusitaniae may also be pathogenic to people (Ryffel et al., 1999; Collares-Pereira et al., 2004), but firm evidence is currently lacking.

B. burgdorferi s.l. infection can be subclinical or it can have a broad range of clinical presentations (Gern & Falco, 2000). Symptoms apparently depend on the Borrelia genospecies involved, the tissues affected, the duration of infection and individual human host factors, including genetic predisposition. There is considerable evidence that infection with different LB genospecies have different clinical outcomes (Gern & Falco, 2000; WHO Regional Office for Europe, 2004). Thus, B. burgdorferi s.s. is most often associated with arthritis, particularly in North America, where it is the only known cause of human LB; B. garinii is associated with neurological symptoms; and B. afzelii is associated with the chronic skin disease acrodermatitis chronica atrophicans (ACA). All four pathogenic B. burgdorferi s.l. genospecies, including B. spielmanii (formerly named A 345), have been isolated from erythema migrans (EM) lesions (Fingerle et al., 2005). There is evidence in Europe that EM occurs more frequently in B. afzelii infections than in those caused by B. garinii.

Generally, clinical presentations can be divided into three stages (Gern & Falco, 2000; Steere, Coburn & Glickstein, 2005).

1. The first stage, early localized LB, is characterized by an expanding red rash (EM, often with central clearing) and flu-like symptoms (such as headache and fever) 2–30 days after an infective tick bite, which occurs in about 60% of cases. The rash can be faint and difficult to notice and resolves even without treatment.

2. The second stage, early disseminated LB, varies from patient to patient and can include more severe flu-like illness, secondary skin lesions, facial palsy, aseptic meningitis, mastitis and also results of arthritis with effusion or carditis.

3. The third stage, late LB, is most commonly manifested as Lyme arthritis, typically affecting large joints, especially the knee. Other presentations are ACA, an unusual skin condition, and, rarely, chronic Lyme meningoecephalitis, where sporadic fatalities have been reported. Late stage central nervous system involvement can be severe and difficult to treat. Late LB symptoms can be nonspecific, difficult to diagnose, and can occur in other conditions.

According to treatment guidelines, LB treatment involves different antibiotic regimens in varying concentrations, adapted to specific clinical manifestations (Wormser et al., 2000). Doxycycline is effective in early LB. Amoxicillin and penicillin are also still drugs of choice. Treatment of late-stage disseminated LB requires higher doses, often of ceftriaxone or ceftaxime, and sometimes longer treatment periods. A specific vaccine for people, based on outer surface protein A (OspA), was temporarily available in the United States, but was withdrawn by the manufacturer in 2002. Due to the heterogeneity of B. burgdorferi s.l. genospecies in Europe and Asia, an effective vaccine for Europe would most probably require a defined so-called cocktail of immunogenic outer surface proteins.
B. Tick distribution

Source: Fig. 10.2. Distribution of Lyme disease in the United States

A. Lyme disease cases

Source: Grodzicki et al. (2004).

Fig. 10.2. Distribution of Lyme disease in the United States

B. Tick distribution

10.4.2. Geographical distribution

The global distribution of human pathogenic B. burgdorferi s.l. genotypes includes parts of North America and most of Europe and extends eastward in Asia to Japan (Fig. 10.1 and 10.2). In Europe, LB has been reported throughout the continent (including the European parts of the Russian Federation), except for the northernmost areas of Scandinavia. Taking the limitations of seroprevalence studies into account, LB in Europe shows a gradient of increasing incidence from west to east, with the highest rates of incidence in central-eastern Europe. Simultaneously, LB shows a gradient of decreasing incidence from south to north in Scandinavia and north to south in the European Mediterranean and Balkan countries (Lindgren, Talleklint & Polfeldt, 2000; Faule et al., 2002; WHO Regional Office for Europe, 2004). The incidence of LB is apparently also increasing eastward in Asia. Infection rates are highest in adult ticks and vary between 10% and 30% in Europe (5–10% in nymphs), reaching up to a 45% positivity rate in adult ticks in hot spots of LB in Germany and Croatia (Hubalek & Hloužek, 1998; Kimmig, Oehme & Backe, 1998; Golubovs & Zember, 2001).

In the foreseeable future, the incidence of TBDs, especially LB, seems likely to increase, partly due to man-made environmental changes. For example, some current approaches to urban planning can provide additional ecotopes suitable for castor-bean tick and taiga tick, Ixodes persulcatus, infestations (Kriz et al., 2004). In North America, urbanization has produced extensive suburban and periurban areas that provide an interface between urban and sylvan environments—a so-called border effect. Property sizes in these areas tend to be larger than in urban areas and therefore allow ready access to tick habitats that border infested natural ecosystems. This border effect is more pronounced in North America than in Europe. However, the European landscape is beginning to change. Increasing urbanization can potentially create conditions similar to those in North America, as recently shown in the federal state of Mecklenburg-Western Pomerania, Germany (Talaska, 2003), potentially leading to greater human exposure to TBDs. This, in turn, the increase of LB is apparently related to that of urban sprawl, which often results in invasion of residential areas by deer and mice, providing reservoirs, tick hosts, and carriers for the spirochete (Marshall et al., 1994). Moreover, some studies suggest that climate changes in Europe have resulted in a northern shift in the distributional limit of castor-bean ticks, an increase in their population density in Sweden and a shift into higher altitudes in mountainous areas in the Czech Republic (Lindgren, Talleklint & Polfeldt, 2000; Danišová, 2006). Castor-bean tick nymphs infected with B. afzelii were found at altitudes up to 1024 m, and tick populations reached up to 1250–1270 m. Thus, the range of LB is apparently increasing in Europe. The prevalence of ticks infected with B. burgdorferi s.l. has also increased at some sites (Kampen et al., 2004), possibly due to changes in climate or wildlife management.

In the United States, LB is most common in the north-eastern and mid-Atlantic states and in the northern Midwest, with scattered foci in the south-eastern states and in California (Fig. 10.2). Scattered foci also exist in the Great Lakes region in southern Ontario and possibly other parts of Canada (Barker & Lindsay, 2000). Borrelia burgdorferi s.l. has been present in North America at least since the 1800s (Marshall et al., 1994). The increase and expanding range of LB in North America apparently results from a combination of factors: increasing populations of white-tailed deer (Odocoileus virginianus), an important host for adult black-legged ticks; habitat modifications that favour dissected second-growth woodlands (following movement of eastern farmers to the Midwest); and suburbanization that has produced excellent tick habitats and brought residents close to ticks (Spigelman, Telford & Pollack, 1993). Genetic evidence suggests recent expansion of black-legged tick and B. burgdorferi populations in the north-eastern United States (Qui et al., 2002). Borrelia burgdorferi s.s. is a generalist in the north-east, with individual genotypes infecting a variety of mammalian hosts, which may have contributed to its rapid expansion (Hanimová et al., 2006). Its range continues to expand— for example, with the spread of tick populations and LB cases in New Jersey and up the Hudson Valley of New York (White et al., 1991; Schulze, Jordan & Hunger, 1998).
10.4.3. Epiizootiology and epidemiology

LB is a sylvatic zoonosis. Ticks that are generally associated with temperate deciduous woodlands that include patches of dense vegetation with little air movement and high humidity carry the infectious agent. LB is also associated with some coniferous forests, when conditions are suitable for the ixodid tick vectors (Ginsberg et al., 2004). In open habitats in Europe, such as meadows and moorland, the main source of blood-meals is usually livestock, such as sheep and cows. With increasing frequency, ticks also occur in domestic settings when a moist microhabitat is provided by high grass, gardens and rough forest edges. Foliage, decomposing organic matter and litter can give shelter to both ticks and small mammals that act as hosts for immature ticks. Therefore, contemporary trends of suburbanization can potentially increase exposure in the peri-domestic environment. Vector ticks are frequently encountered in residential areas (Május et al., 1991), and they are also encountered by people recreationally or occupationally exposed to forest habitats (Ginsberg & Ewing, 1989; Rath et al., 1996).

Closed enzootic cycles that involve reservoir-competent hosts and host-specific ticks also have a role in maintaining LB in nature, and the spirochete can be transmitted to people when a bridge vector, such as the castor-bean tick, intrudes into the cycle. An example of this is when the castor-bean tick vectors borreliae to people, while the taiga tick vectors borreliae to small mammals that act as hosts for immature ticks. Therefore, contemporary trends of suburbanization can potentially increase exposure in the peri-domestic environment. Vector ticks are frequently encountered in residential areas (Május et al., 1991), and they are also encountered by people recreationally or occupationally exposed to forest habitats (Ginsberg & Ewing, 1989; Rath et al., 1996).

In Europe, the castor-bean tick and the taiga tick serve as vectors to people, while the black-legged tick and the western black-legged tick act as vectors to people, while Ixodes dentatus, Ixodes spinipalpis and other species serve as enzootic vectors to small animals, such as rabbits and wood rats (Eisen & Lane, 2002). The prevalence of infection in nymphal black-legged ticks varies from about 15% to 30% in endemic areas of the north-east (Piesman, 2002). A variety of other tick species, as well as some haematophagous insects, have been found to carry borreliae, many birds can serve as carriers of attached infected ticks when migrating (see Table 10.6), and other species serve as enzootic vectors to small animals, such as rabbits and wood rats (Eisen & Lane, 2002). The prevalence of infection in nymphal black-legged ticks varies from about 15% to 30% in endemic areas of the north-east (Piesman, 2002). A variety of other tick species, as well as some haematophagous insects, have been found to carry borreliae, but are most probably not involved in disease transmission. B. burgdorferi s.l. is transmitted transstadially by vector ticks, but transovarial transmission, while it occurs, is relatively rare. Besides these tick-specific transmission modes, a co-feeding effect has been described, in which uninfected ticks can acquire spirochetes while feeding near infected ticks on an uninfected host (Ogden, Uttal & Randolph, 1997).

Compared with North America, important differences in the ecology of LB in Europe result from the greater diversity of Borrelia spp. that cause human disease in Europe. Table 10.6 provides an overview of known genospecies of B. burgdorferi s.l., their primary vectors and reservoir hosts, geographical distribution, and virulence in people. In North America, B. burgdorferi s.s. is responsible for the vast majority of human cases, while in Europe, B. afzelii, B. garinii and B. valaisiana are most common. The most important reservoir in North America is the white-footed mouse, Peromyscus leucopus (Mather et al., 1989), and other rodents can also serve as major reservoirs, including voles (such as the meadow vole, Microtus pennsylvanicus), chipmunks (such as the eastern chipmunk, Tamias striatus) and rats (such as the Norway rat) (Smith et al., 1993; Markowski et al., 1998).

Some North American birds, such as the American robin and the song sparrow, Melospiza melodia, can also serve as reservoirs (Richter et al., 2000; Ginsberg et al., 2005). In Europe, on the other hand, different species of Borrelia are associated with different wild hosts. The primary reservoirs of B. afzelii are rodents, including mice (Apodemus spp.) and voles (Clethrionomys spp.) (Kurtenbach et al., 2002a; Haincová et al., 2003a). In contrast, the primary reservoirs of B. garinii and B. valaisiana are birds, including pheasants and songbirds (Humber et al., 1998; Kurtenbach et al., 1998, 2002b; Haincová et al., 2003b).

Reservoir competence varies among hosts. Lagomorphs, such as hares (Lepus spp.) and rabbits (Oryctolagus spp. and Sylvilagus spp.), show varying degrees of reservoir capacity. Similarly, carnivorous mammals, such as foxes (the red fox, Vulpes vulpes, for example), dogs (the domestic dog, Canis familiaris, for example) and cats (the domestic cat, Felis domestica, for example), vary considerably in competence as reservoirs. Borreliae, however, are eliminated in ticks attached to some lizard species (L. ane and Qustad, 1998), which apparently limits the importance of LB in areas where ground-dwelling lizards are abundant, such as south-eastern North America. In addition to their roles as reservoirs of some Borrelia spp., some birds can serve as carriers of attached infected ticks when migrating (see Chapter 8). Ungulates (such as deer, sheep, cattle, goats and pigs) feed large numbers of mainly adult ticks in nature and may influence the epidemiology of LB, by increasing tick numbers (and thus the number of ticks per individual reservoir host), even if they themselves are not competent reservoirs.

10.5. TBE

10.5.1. Public health

TBE is caused by the TBE virus (TBEV), a member of the RNA virus family Flaviviridae. Three subtypes can be differentiated. One of them causes central European encephalitis (CEE); this virus subtype was first isolated in 1937, and the castor-bean tick is the main vector. The Siberian and far-eastern subtypes (endemic in eastern Europe and throughout northern Asia) are the causative agents of Russian spring-summer encephalitis (RSSE), which is responsible for a disease similar to CEE, but with a more severe clinical course. The primary vector of RSSE is the taiga tick. Transmission can also occur...
on an epidemic scale after consumption of raw milk from TBE-infected goats, sheep or
cows. Person-to-person transmission has not been reported. However, vertical virus trans-
mission from an infected mother to her foetus has been described (Hubálek & Halouzka,
1995).

Table 10.6. Overview of known genospecies of *B. burgdorferi* s.l.

<table>
<thead>
<tr>
<th>Borrelia genospecies</th>
<th>Literature</th>
<th>Geographical distribution</th>
<th>Ixodes tick vector</th>
<th>Primary vertebrate host</th>
<th>Primary symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. burgdorferi s.s.</td>
<td>Baranton et al. (1992)</td>
<td>North America, Europe, N. Africa</td>
<td>/s. scapularis /s. dammini /s. pacificus /s. n. /s. dentatus</td>
<td>Rodents, insectivores</td>
<td>Arthritis, neuropathy</td>
</tr>
<tr>
<td>B. garinii</td>
<td>Baranton et al. (1992)</td>
<td>World</td>
<td>/s. n. /s. persicaria /s. ulva /s. hexagonus /s. trianguliceps</td>
<td>Passerine birds, pheasants</td>
<td>Neuropathy</td>
</tr>
<tr>
<td>B. afzelii</td>
<td>Canica et al. (1993)</td>
<td>Europe</td>
<td>/s. n. /s. persicaria /s. hyalomysis</td>
<td>Rodents</td>
<td>Erythema migrans, skin lesions</td>
</tr>
<tr>
<td>B. japonica</td>
<td>Kawabata & Masuzawa (1993)</td>
<td>Japan</td>
<td>/s. ovatus</td>
<td>Not determined</td>
<td>—</td>
</tr>
<tr>
<td>B. leneukii</td>
<td>Fukunaga et al. (1996)</td>
<td>Japan</td>
<td>/s. leneukii</td>
<td>Not determined</td>
<td>—</td>
</tr>
<tr>
<td>B. turdi</td>
<td>Fukunaga et al. (1996)</td>
<td>Japan</td>
<td>/s. turdi</td>
<td>Not determined</td>
<td>—</td>
</tr>
<tr>
<td>B. salisiana</td>
<td>Wang et al. (1997)</td>
<td>Eurasia</td>
<td>/s. n. /s. columnae /s. princeps</td>
<td>Passerine birds, pheasants</td>
<td>Unclear</td>
</tr>
<tr>
<td>B. bissetii</td>
<td>Postic et al. (1998)</td>
<td>United States, Europe</td>
<td>/s. scapularis /s. pacificus /s. spinipalpis</td>
<td>Not determined</td>
<td>Not determined</td>
</tr>
<tr>
<td>B. vinac</td>
<td>Masuzawa et al. (2001)</td>
<td>China</td>
<td>/s. ovatus</td>
<td>Rodents</td>
<td>Unclear</td>
</tr>
<tr>
<td>B. spielmani</td>
<td>Richter et al. (2006)</td>
<td>Central Europe</td>
<td>/s. n.</td>
<td>Garden dormice</td>
<td>Erythema migrans</td>
</tr>
</tbody>
</table>

Because not all Ixodes ticks have common names, only the scientific names are given here.

Public Health Significance of Urban Pests

TBE is the most frequent viral TBD in central Europe. Overall, several thousand clinical cases a year occur in Europe, mainly in the Russian Federation (5000–7000 cases a year), the Czech Republic (400–800 cases a year), Latvia (400–800 cases a year), Lithuania (100–400 cases a year), Slovenia (200–300 cases a year), and Germany (200–400 cases a year) and Hungary (50–250 cases a year). In 1997, 10208 clinical cases of TBE (with 121 fatalities) were reported from all over Europe. In 2005, a sharp increase of 50% or more in notified clinical cases of TBE was seen in Switzerland (91 cases in 2004 versus 141 cases in 2005; weeks 1–33) (Anonymous, 2005b) and Germany (258 cases in 2004 versus 426 cases in 2005) (Anonymous, 2005b). Since treatment of this potentially fatal disease depends on the symptoms and often requires hospitalization and intensive care, Anti-inflammatory drugs are sometimes utilized, and intubation and ventilatory support are sometimes necessary. Licensed vaccines (active and passive) that neutralize all three virus subtypes (Rendi-Wagner, 2005) are commercially available, with protection rates exceeding 98%.

10.5.1.1. Public health impact of TBE in Europe

TBE is the most frequent viral TBD in central Europe. Over all, several thousand clinical cases a year occur in Europe, mainly in the Russian Federation (5000–7000 cases a year), the Czech Republic (400–800 cases a year), Latvia (400–800 cases a year), Lithuania (100–400 cases a year), Slovenia (200–300 cases a year), Germany (200–400 cases a year) and Hungary (50–250 cases a year). In 1997, 10208 clinical cases of TBE (with 121 fatalities) were reported from all over Europe. In 2005, a sharp increase of 50% or more in notified clinical cases of TBE was seen in Switzerland (91 cases in 2004 versus 141 cases in 2005; weeks 1–33) (Anonymous, 2005b) and Germany (258 cases in 2004 versus 426 cases in 2005) (Anonymous, 2005b).

Since treatment of this potentially fatal disease depends on the symptoms, vaccination, prevention of infective tick-bite and pasteurization of contaminated milk constitute the first line of defense in preventing TBE. Due to the frequent need for hospitalization (often with intensive care), subsequent prolonged recovery time and neurotropic sequelae, the economic impact of this disease, in addition to its effect on health, is costly. A study has been reported in Austria, vaccination programmes can substantially lower the annual incidence of TBE. Vaccination coverage of the Austrian population increased from 6% in 1980 to 86% in 2001, exceeding 90% in some hyperendemic areas (Kunz, 2003). This programme led to a steady decline in cases of TBE, drastically reducing the annual health impact for Austria to less than 10%. For example, in Carinthia, Austria, there were an average of 155 cases a year from 1973 to 1982, while from 1997 to 2001 there were only four cases a year (Kunz, 2003). In H ungary, 3–5% of the population were reported to be vaccinated, and in the southern Bohemia region of the Czech Republic it was 10% (WHO Regional Office for Europe, 2004). For other European countries, the vaccination status is unknown, but is probably low (Kunz, 2003).
10.5.2. Geographical distribution

The currently known geographical distribution of European TBE foci includes much of central and eastern Europe and extends broadly into Asia. Randolph (2001) predicted an eventual future decline in the distribution and incidence of TBE, due to global climate change, but currently both the geographical distribution and incidence of infection are increasing. Therefore, programmes that promote vaccination and prevention of tick bites are essential in highly affected areas. TBE has recently spread in a north-western direction from central Europe to western Germany and has moved north to Finland, Norway, and Sweden, as well as to higher altitudes in mountainous areas in the Czech Republic (Hillyard, 1996). The north-westward spread of TBE might be explained by:

• the movement of wildlife, migrating birds and domestic animals together with their ticks across the continent;

• landscape changes, resulting from human activities; and

• the result of global warming.

Milder winter temperatures in particular have important effects on tick distribution and can foster shifts into higher latitudes and altitudes (Lindgren, Talley & Poffel, 2000).

10.5.3. Epizootiology and epidemiology

Ixodid ticks act as both the vector and reservoir for TBEV. This virus can chronically infect ticks and can be transmitted transstadially and transovarially. Small rodents are the main hosts, although viraemia has been reported from insectivores (representing an order of mammals whose members basically feed on insects and other arthropods), goats, sheep, cattle, canids (which include foxes, wolves, dogs, jackals and coyotes) and birds. People are an accidental host, and large mammals are feeding hosts for adult vector ticks, but do not play a significant role in maintaining the natural virus cycle. The infection rates in castor-bean ticks and taiga ticks in endemic foci usually vary from 0.1% to 5%, but can reach up to 10% in hyperendemic foci - for example, in Austria. TBE is most likely to be acquired in forests rich in small mammals, so forest workers, hunters and others highly exposed to this ecotope are at high risk. The seroprevalence of this virus in foresters can reach 12–16% in hyperendemic foci - for example, in Austria and Switzerland. In Germany, seroprevalence rates exceeding 20% have been found in foresters in the Emmendingen and Ludwigsburg counties (Kimmig, Oehme & Backe, 1998). TBE morbidity rates in the Czech Republic and Slovakia averaged 4.2 (1.4–9.9) deaths per 100 000 population between 1995 and 2000. In Switzerland (T hurgau canton) a morbidity rate of 5.4 people per 100 000 population was estimated for 1995. The highest morbidity in Germany was estimated for the federal state of Baden-Württemberg, with 1.1 cases per 100 000 population. In some cases, up to 76% of human TBE infections can result from consumption of raw milk, as was reported in Belarus (Ivanova, 1984).

10.6. RMSF

10.6.1. Public health

RMSF was first recognized in an epidemic in the Bitterroot Valley of Montana, in the United States, in the late 1800s. The etiological agent is Rickettsia rickettsii, and the primary vectors are the American dog tick in eastern and central North America and the Rocky Mountain wood tick in the Rocky Mountain region (Sonenshine, Lane & Nicholson, 2002). The number of cases reported to the CDC varies from about 200 to about 1200 a year, with an average incidence from 1985 to 2002 of between 0.24 to 0.32 cases per 100 000 population (Schrifler & A zad, 1994).

RMSF is characterized by the sudden onset of high fever, headache and myalgia, often with nausea and other symptoms (Macaluso & A zad, 2005). A few days after the onset of symptoms, a rash generally appears, beginning as macropapular eruptions on the ankles and wrists that then spread to the entire body, producing a so-called spotted appearance. The rickettsiae are intracellular parasites that affect (in particular) cells of the capillaries and arterioles. Symptoms are often severe, and though early treatment (generally with tetracyclines) is effective, the disease is fatal in around 5% of cases.

10.6.2. Geographical distribution

The distribution of human cases of RMSF, or at least the distribution of recognized cases, has shifted from the Rocky Mountain region in the late 1800s to eastern and central North America today. The incidence of the disease is currently highest in the south-eastern and south-central states (such as the Carolinas and Oklahoma), but cases are scattered throughout the eastern and central regions of North America (Fig. 10.3), with relatively few cases in the Rocky Mountain and western states (Groseclose et al. 2004; Macaluso & A zad, 2005).
10.6.3. Epizootiology and epidemiology

RMSF is generally acquired in rural and suburban areas with woodland and associated open vegetation where the tick vectors are abundant (Sonenshine, Peters & Levy, 1972; Sonenshine, Lane & Nicholson, 2002). However, foci sometimes occur in appropriate habitats within large cities (Salgo et al., 1988). The pathogen is transmitted vertically in the tick (from mother to offspring) and is maintained transstadially, so the tick can act as both vector and reservoir.

However, infection with nonpathogenic rickettsiae can interfere with transovarial transmission (Burgdorfer, Hayes & Mavros, 1981). Small mammals also can serve as reservoirs and apparently can contribute to amplification under appropriate circumstances, but occurrence of RMSF does not seem to depend on any particular vertebrate reservoir (Schriever & Azad, 1994). Larvae and nymphs of American dog ticks and Rocky Mountain wood ticks attach to a variety of small and medium-sized mammals, including mice, voles, rats, ground squirrels, hares and rabbits, many of which can maintain infection with spotted fever group rickettsiae. A dust of these tick species generally attach to larger mammals, including human beings. Infection rates of adults vary considerably from site to site, ranging from less than 1% to about 10%.

10.7. Emerging TBDs

Several TBDs have recently been recognized in Europe and North America. Some of these might represent new introductions of the diseases to these continents, while others were undoubtedly already present, but were recognized recently because of the renewed attention to TBDs that resulted from the recent increase of L. B. Also, some diseases that have been rare in the past are apparently expanding in range, along with expanding tick populations. Selected diseases that have recently been recognized in North America and Europe are discussed in this section.

10.7.1. Crimean-Congo haemorrhagic fever

Crimean-Congo haemorrhagic fever (CCHF) was first mentioned by the Tajik physician Abu-Ibrahim Durdjani in the 12th century and has been extensively studied since the 1944/1945 epidemic in the Crimean Peninsula (H ubakel & H alouza, 1996). This epidemic resulted in more than 200 human cases, with 10% of them fatal. The disease is caused by the CCHF virus (CCHFV), a Nairovirus (family Bunyaviridae) closely related to D ugbe and N airob shep disease viruses and classified as a biosafety level-4 virus (the highest biological security level). The clinical course appears as a haemorrhagic fever with severe typhoid-like symptoms, including fever, chills, headache, myalgia, backache, anorexia, nausea, repeated vomiting, conjunctivitis, pharyngitis, bradycardia, meningitis and encephalitis. Haemorrhagic manifestations can vary from petechiae (pinpoint-sized haemorrhages of small capillaries in the skin) to large haematomas (solid swellings of clotted blood within tissues) on the mucous membranes and skin, and bleeding from the gums, nose and intestines and, less frequently, lungs and kidneys. Case fatality rates are usually between 8% and 30%, but may reach up to 50–60% in cases transmitted from person to person (Hubakel & H alouza, 1996). Convalescence is slow, but usually without sequelae. Treatment of confirmed human cases requires barrier nursing and special hygiene care to prevent nosocomial infection.

Treatment usually depends on the symptoms, but treatment with ribavirin seems promising during the early stages of the disease (Ozkurt et al., 2006). An inactivated CCHF vaccine was administered to several hundred people in Bulgaria and Ukraine (Rostov oblast), but severe side effects appeared. Specific immunoglobulins can also be used prophylactically or therapeutically. However, no licensed, safe vaccine is currently available.

CCHF is the most severe TBD in Europe and has the potential to spread quickly from person to person. The disease is probably underreported worldwide, so European and global incidences are unknown. Bulgaria, the southern part of the Russian Federation and Ukraine are among the most highly affected areas within Europe. Cases have also been reported from Bosnia and Herzegovina, Greece, Hungary, Montenegro, the Republic of Moldova, Serbia, and the former Yugoslav Republic of Macedonia. From 1952 to 1970, 865 cases of CCHF were recorded in Bulgaria alone, with a case fatality rate of 17%, and 6% of the cases of nosocomial origin (Vasilenko et al., 2000). The virus has been detected in almost all south-easter districts of the Russian Federation, resulting in an additional regional budget of Rub 2.5 million (USS 872000) for diagnostic procedures and preventive measures (ProMED Mail, 2005). In 2002, eight cases clustered within families were observed in Albania (Papa et al., 2002). Although the overall incidence for Europe remains unclear, CCHF is a re-emerging disease with an estimated annual incidence far greater than 100 cases, especially during outbreaks (Pau del et al., 2002).
10.7.2. Tick-borne rickettsioses

Several new human-pathogenic tick-borne rickettsioses of the spotted fever group have been reported from Europe during the last decade. Among them, *Rickettsia conorii* and *Rickettsia helvetica* are of greatest concern. *Rickettsia slovaca*, *Rickettsia aeschlimannii* and *Rickettsia mongolotimonae* are also endemic, although with very few human cases reported to date. Novel rickettsioses have recently been described in North America as well.

10.7.2.1. Boutonneuse fever

R. conorii is the causative agent of Boutonneuse fever (BF), also known as tick-borne typhus, Mediterranean spotted fever and South African tick bite fever. Patients usually present with fever, rash, splenomegaly, lymphadenopathy, and a maculopapular erythematous rash and a typical black skin lesion, called tache noir, at the site of the infected-tick bite. While the disease is usually mild, severe forms, including encephalitis, occur occasionally. Overall, the case fatality rate in Europe is estimated to be less than 2.5%, even if untreated. Fever usually persists for a few days to two weeks, with a specific antibiotic treatment required for no more than two days. The seroprevalence rates in dogs, which are often infected with up to 100 adult brown dog ticks per animal, can be quite high in hyperendemic foci, varying between 35.5% in Italy and 93.3% in Portugal. The annual incidence rate in people has been estimated to be 48 cases per 100,000 population in Corsica, France, whereas 1000 cases have been reported annually from Portugal. Human seroprevalence rates can exceed 70% in hyperendemic foci in Spain (WHO Regional Office for Europe, 2004). However, the overall incidence of BF in Europe is unclear.

R. conorii is widely found in Southern Europe and the Mediterranean countries. This disease is spreading northwards, reaching Belgium, Germany and the Netherlands, where antibodies were detected in dogs and people. *R. conorii* has been isolated from sheep ticks and rodents in Belgium (Jardin, Giroud & LeRay, 1969; Gottes, 1999; WHO Regional Office for Europe, 2004). The major tick vector of *R. conorii* in Europe is the brown dog tick. Other vectors include the castor-bean tick, the hedgehog tick, the marsh tick (also called the ornate cow tick), *Dermacentor reticulatus*, and the ornate sheep tick, *Dermacentor marginatus*. Besides vector ticks, the primary reservoirs are dogs, rabbits and rodents. Pet dogs can acquire infected ticks during family holidays, and they can carry *R. conorii* with them when they return home further north in Europe. Human infection with BF in urban areas, often in a person's own home, can be caused by skin or eye contamination from rickettsiae-infected dog ticks that are crushed while de-ticking infected dogs (Hillyard, 1996).

10.7.2.2. Rickettsia helvetica

First isolated in Switzerland in 1979, this agent was linked with human disease in 1999, when it was associated with two fatal Swedish cases of chronic perimyocarditis (Nilsson, Lindquist & Pahlson, 1999). *R. helvetica* is now known to have caused chronic interstitial inflammation and pericarditis in people in France, Sweden and Switzerland. A serosurvey of foresters conducted after seroconversion of a 37-year-old man in 1997 in eastern France revealed a seroprevalence rate of 9.2% (Fournier et al., 2000). The disease is transmitted by the castor-bean tick, and initial results show infection rates in ticks between 1.7% in Sweden and 8.2% in northern and central Italy (Nilsson et al., 1999; Beninati et al., 2002). Recent studies indicate that *R. helvetica* is widely distributed throughout Europe and might cause more clinical disease and (even) mortality than is currently recognized (WHO Regional Office for Europe, 2004).

10.7.2.3. HME

HME is caused by the rickettsial pathogen *Ehrlichia chaffeensis*. In North America, this pathogen exists in a tick–deer cycle, with the lone star tick serving as the primary vector (Ewing et al., 1995) and the white-tailed deer serving as the primary reservoir (Lockhart et al., 1997). Human cases are most common in the southern Midwest, with foci along the east coast (Dawson et al., 2005). In 2001, 142 cases were reported in the United States; in 2002, 216 cases were reported; and in 2003, 321 cases were reported (CDC, 2003; Groselj et al., 2004; Hopkins et al., 2005). *E. chaffeensis* has also been found to be endemic in Europe—in Belgium, the Czech Republic, Denmark, Greece, Italy, and Sweden—but human cases of disease have not been described to date (WHO Regional Office for Europe, 2004; Oto & Brouqui, 2005).

10.7.2.4. HGA

HGA is caused by the rickettsial pathogen *Anaplasma phagocytophilum* (formerly *Ehrlichia phagocytophila*). Patients present with an acute febrile illness, and most develop leukopenia or thrombocytopenia (or both), and elevated concentrations of C-reactive protein and transaminases, with occasional fatalities occurring. Treatment with tetracycline generally leads to full recovery. The pathogen was first isolated from ticks and people in the northern Midwestern United States in the 1990s (Chen et al., 1994; Dumler et al., 2001). The black-legged tick is the vector in the United States, and its mammal hosts, especially the white-footed mouse, serve as reservoirs (Pancholi et al., 1995; Levin & Fish, 2001). The United States distribution includes the Atlantic coastal states, the northern Midwest and California (CDC, 2003; Maurin, Bakken & Dumbrell, 2003; Brown, Lane & Dennis, 2005). In 2001, 261 cases were reported to the CDC; in 2002, 511 cases were reported (CDC, 2003; Groselj et al., 2004).

In Europe, HGA in people was first recognized in 1995, when serum antibodies against A. phagocytophilum were confirmed. In 1997, the first proven European case of human disease was reported from Slovenia. Through March 2003, about 65 patients with confirmed HGA (and several patients fulfilling criteria for probable HGA) had been reported in Europe (Strie, 2004). Seroprevalence rates in the WHO European Region range from 0% to more than 30%, with infection rates in adult-castor-bean ticks (the recognized tick vector) range from 0% to more than 30%. The relative high seroprevalence rates in people and the presence of A. phagocytophilum in vector ticks in many European countries are discordant with the rather low number of patients with proven HGA. This may be due to an inadequate awareness among European physicians and limited recording and reporting of the disease, or it may be due to the presence of nonpathogenic strains of A. phagocytophilum (Strie, 2004).
10.7.3. Babesiosis

Human babesiosis, first described in 1957, is a malaria-like illness caused by piroplasms (pear-shaped protozoan organisms that live in red blood cells of mammals), including *B. microti* in North America and *Babesia divergens* in Europe (Homer & Persing, 2005). The primary vectors are the black-legged tick in eastern North America and the castor-bean tick in Europe. Rodents, such as white-footed mice, serve as reservoirs (Spielman, 1976; Spielman et al., 1979). Babesiosis is often mild and self-limiting, but can be severe and is undoubtedly underreported. Nevertheless, hundreds of cases have been reported in North America, and 29 in Europe (from England and France). In the United States, cases have been reported primarily in coastal areas of the north-eastern and mid-Atlantic states (Dammin et al., 1981; Spielman et al., 1985).

10.8. Ticks in human dwellings

In Europe, the brown dog tick can persist in long-term infestations of human dwellings with dogs. The European pigeon tick can also occur in dwellings with pigeon infestations or breeding. T he fowl tick and Ornithodoros erraticus may also occur in houses close to poultry stables (*Argas spp.*) in south-east Europe and pig stables (*Ornithodoros spp.*) in Spain and Portugal.

Ticks found in human dwellings in North America are primarily soft ticks (of the genus *Ornithodoros*) associated with rodents that nest in buildings. The most important human disease transmitted by these ticks is tick-borne relapsing fever, which is caused by various species of the bacterial genus *Borrelia*. The most common pathogens in this group are *B. hermsi* (transmitted by *O. hermsi*) in mountainous areas of the western United States and Canada, and *B. turicatae* (transmitted by *O. turicatae*) in desert and scrub habitats in the south-western United States and Mexico (Barbour, 2005). People generally encounter these pathogens recreationally, when occupying rustic cabins that are inhabited by tick-bearing rodents. Recently, specimens of the bat-associated soft tick, *Carios kelleyi* (collected from buildings in Iowa) were found to be infected with spotted fever group *Rickettsia*, relapsing fever group *Borrelia*, and *Bartonella henselae* (the etiological agent of cat scratch disease), but the role of these ticks as vectors of these bacterial pathogens has not been established (Lofitis et al., 2005). Also, the brown dog tick can be found in homes, associated with dogs, but generally does not bite people.

10.9. Tick and tick-borne disease surveillance

TBDs that are reportable in the United States include LB, RMSF, HME, HGA, Q fever, and tularemia (Hopkins et al. 2005). In Europe, where regulations differ among countries, only TBE is widely reportable.

Active surveillance for ticks or TBDs requires purposeful sampling of ticks or samples from wild or domestic hosts, or from people (Nicholson & Mather, 1996; Lindenmayer, Marshall & Onderdonk, 1991). Passive surveillance, on the other hand, utilizes information collected for other purposes, such as data collected from tick laboratories or hospital registries, to assess tick or disease distribution (White, 1993). A tick surveillance tends to provide more accurate information, but is expensive and labour intensive. Passive surveillance is less expensive and requires less effort, and it can provide useful information of appropriate types, but the value of the results are sometimes limited by unidentifiable biases in data collection (Johnson et al., 2004). Most current tick surveillance programmes are of the passive type.

10.10. Tick and TBD management

Ticks are controlled for a variety of reasons, including nuisance prevention, commodity protection (to prevent cattle loss, for example) and protection against TBDs. This section briefly reviews tick control methods and then discusses IPM strategies that are appropriate for various purposes of tick control.

10.10.1. Self-protection

10.10.1.1. Avoidance

Effective repellents can prevent ticks from becoming attached to the body and can be applied to clothing or directly on the skin (some products are not labelled for use on skin). Effective skin repellents include N,N-diethyl-3-methylbenzamide (DEET), (N,N-butyl-N-acetyl-amino-propionic acid-ethyl ester and 1-piperidinecarboxylic acid 2-(2-hydroxyethyl)-1-methylpropylester (picaridin). Depending on the active ingredient and formulation, skin repellents generally do not last longer than a few hours, because of absorption or abrasion.
10.10.1.3. Clothing

Individuals can protect themselves against tick attachment by tucking trousers into boots or socks and tucking shirts into trousers. Light-coloured clothing aids detection of dark-coloured ticks, which can be collected or removed with commercial tape. Most TBDs require a period of attachment (often several hours) before the pathogen is transmitted, so thorough body examination and prompt removal of attached ticks at the end of a day spent in tick-infested areas can minimize exposure to TBD agents.

10.10.1.4. Tick removal

Hard ticks should be removed by grasping the tick where the mouthparts are attached to the skin and then pulling it out slowly, but steadily (Neeham, 1985); the use of pointed forceps is preferable, because it avoids contact with fingers and the tick's infective body fluid or excreta. The site should be cleansed with antiseptic before and after removal. Soft ticks withdraw their mouthparts when touched with a hot needle tip or when dabbed with chloroform, ether, alcohol or other anaesthetics (Gammons & Salam, 2002).

10.10.1.5. Clothing impregnation

A major advance in the protection of high-risk personnel, such as outdoor workers, hunters, travelers and soldiers, has been the development of residual insecticides that can impregnate clothing, tents and netting (WHO, 2001a, b). Permethrin, a synthetic pyrethroid insecticide, has been widely used for decades as an arthropod contact repellent; in fabric impregnation, by spraying or soaking the fabric at final concentrations between 500mg/m² and 1300mg/m² (Young & Evans, 1998; Faulde, Uedelhoven & Robbins, 2003). Recently, factory-based impregnation methods have been introduced, such as soaking the fabric or using a new polymer-coating technique for impregnating clothing and battle dress uniforms. The polymer coating is safe, and the impregnation lasts the life of the fabric (Faulde & Uedelhoven, 2006). Ticks crawling up impregnated fabric quickly fall off. The benefits to people are the bites prevented and the acaricidal activity. This method can also be used to protect against other haematophagous arthropod vectors of public health importance.

10.10.1.6. Vaccination

Of tick-borne diseases endemic in Europe and North America, only TBE can be prevented by the use of a vaccine. TBE vaccination is widely neglected as a public health tool for disease prevention (Austria is an exception). A vaccine for preventing LB was briefly available in North America, but this was specific to B. burgdorferi s.s. and would not be efficacious in Europe, where diverse Borrelia spp. are associated with LB in people. The manufacturer removed the vaccine from production in 2002, and no vaccine against LB is currently available.

10.10.2. Habitat manipulation and urban design

Ticks have species-specific habitat requirements, often associated with habitats of hosts and the need to avoid desiccation. Therefore, habitats can be manipulated to make them unsuitable for ticks or to minimize encounters between ticks and people (Stafford, 2004). Suburban habitats associated with natural woodlands foster populations of black-legged ticks and castor-bean ticks, because these habitats are excellent for both immature and adult ticks and for vertebrate hosts suitable for all tick stages. Lawns that were cut short and were open to the sun had minimal numbers of deer ticks, while tick densities increased incrementally in gardens, wood edges and forests (Maukin et al., 1991). Therefore, maintaining a short-clipped lawn and establishing barriers to prevent access to the woods can minimize human exposure to ticks in this environment. Mowing and burning vegetation in natural areas lowers tick numbers temporarily, but ticks reinfest treated areas as the vegetation grows back (Wilson, 1986).

Most ticks that are important to human health are rare in highly urbanized environments, but parks with natural patches and appropriate host species, and natural habitats interspersed with human dwellings in suburban areas, foster encounters between ticks and people. These encounters can be minimized with appropriate design features, such as barriers between areas frequently used by people and natural patches, and pathways constructed through natural sites (boardwalks, for example). Medical entomologists and natural resource experts should be consulted, so that urban design appropriate for the local tick species of concern can be incorporated into the planning process. Unfortunately, in the past, TBDs have rarely been considered in urban or suburban design.

10.10.3. Host-centred methods

Domestic animals can be vaccinated to minimize tick attachment (de la Fuente, Rodriguez & Garcia-Garcia, 2000) or to protect them against TBDs (Kocan et al., 2001). Household pets, especially dogs, are commonly vaccinated against LB in the United States. Vaccination of wild reservoir species of animals (T seep et al., 2001) could theoretically interrupt enzootic transmission cycles of tick-borne zoonoses and, in field trials, it has reduced the prevalence of Lyme spirochetes in questing ticks (T seep et al., 2004), but this approach has not yet been applied to manage the risk of disease.

Manipulation of host populations can also lower tick populations. Excluding deer can lower populations of deer ticks, and deer-proof fencing can contribute to a tick management programme (Daniels, Fish & Schwartz, 1993). Although lowering deer populations by hunting can also lower tick numbers, this approach is not generally practical, because deer populations must be reduced to extremely low levels to have a reliable effect on the transmission of LB (Ginsberg & Stafford, 2005).

10.10.4. Biological control

Ticks have numerous natural enemies, including predators, parasites and pathogens. In the northern hemisphere, predators are generally not specific to ticks. In contrast, wasps of the genus Ixodiphagus parasitize ticks, and the most widespread species, Ixodiphagus hookeri, has been studied as a possible biocontrol agent. This species was released on an island off the New England coast in the early 1900s, resulting in establishment of the wasp, but no tick control. Inundative releases have shown some promise of efficacy in agricultural settings (Wangi et al., 1997), and theoretical analyses suggest that with addi-
Numerous pathogens attack ticks, including bacteria, fungi, and nematodes (Samish, Ginsberg & Glazer, 2004). At present, one of the best candidates for tick biocontrol is the entomopathogenic fungus, Metarhizium anisopliae (Zhioua et al., 1997; Samish et al., 2001). Preliminary field trials have had modest results, but enhanced tick mortality, from the use of an oil-based carrier solution, compared with a water-based solution (Kaaya & Hassan, 2000), suggests that improved formulations may provide effective control. The pathogens that affect ticks typically also affect other arthropods (Ginsberg et al., 2002), so effects on non-target arthropods must be considered in application strategies of biocontrol materials.

10.10.5. Pesticide applications

Numerous pesticides are effective against ticks, and they are widely used to control ticks and TBDs. Acaricides can be broadcast for area control of ticks or can be targeted at host animals used by the ticks. Broadcast applications have the advantage that they can rapidly lower tick numbers, but timing, chemical distribution and formulation can profoundly influence the effectiveness of treatment. For example, broadcast applications for controlling nymphal deer ticks (the primary vector stage of LB in N orth A merica) need to penetrate the leaf litter where the nymphs dwell, while other ticks are better targeted by area sprays. Schulze, Jordan & Han (2000) found that granular formulations of carbaryl effectively controlled deer tick nymphs (which quest down in the leaf litter where the heavy granules were deposited), but they did not control lone star tick nymphs (which quest up in the shrub layer). Also, most materials used for tick control are broadly toxic to arthropods (Ginsberg et al., 2002), so effects on non-target arthropods must be considered in application strategies of biocontrol materials.

Numerous pathogens attack ticks, including bacteria, fungi, and nematodes (Samish, Ginsberg & Glazer, 2004). At present, one of the best candidates for tick biocontrol is the entomopathogenic fungus, Metarhizium anisopliae (Zhioua et al., 1997; Samish et al., 2001). Preliminary field trials have had modest results, but enhanced tick mortality, from the use of an oil-based carrier solution, compared with a water-based solution (Kaaya & Hassan, 2000), suggests that improved formulations may provide effective control. The pathogens that affect ticks typically also affect other arthropods (Ginsberg et al., 2002), so effects on non-target arthropods must be considered in application strategies of biocontrol materials.

10.10.5. Pesticide applications

Numerous pesticides are effective against ticks, and they are widely used to control ticks and TBDs. Acaricides can be broadcast for area control of ticks or can be targeted at host animals used by the ticks. Broadcast applications have the advantage that they can rapidly lower tick numbers, but timing, chemical distribution and formulation can profoundly influence the effectiveness of treatment. For example, broadcast applications for controlling nymphal deer ticks (the primary vector stage of LB in N orth A merica) need to penetrate the leaf litter where the nymphs dwell, while other ticks are better targeted by area sprays. Schulze, Jordan & Han (2000) found that granular formulations of carbaryl effectively controlled deer tick nymphs (which quest down in the leaf litter where the heavy granules were deposited), but they did not control lone star tick nymphs (which quest up in the shrub layer). Also, most materials used for tick control are broadly toxic to arthropods (Ginsberg et al., 2002), so effects on non-target arthropods must be considered in application strategies of biocontrol materials.

Numerous pathogens attack ticks, including bacteria, fungi, and nematodes (Samish, Ginsberg & Glazer, 2004). At present, one of the best candidates for tick biocontrol is the entomopathogenic fungus, Metarhizium anisopliae (Zhioua et al., 1997; Samish et al., 2001). Preliminary field trials have had modest results, but enhanced tick mortality, from the use of an oil-based carrier solution, compared with a water-based solution (Kaaya & Hassan, 2000), suggests that improved formulations may provide effective control. The pathogens that affect ticks typically also affect other arthropods (Ginsberg et al., 2002), so effects on non-target arthropods must be considered in application strategies of biocontrol materials.

10.11. IPM

IPM is an approach to the management of arthropod pests that fosters the integration of various pest control methods, so as to minimize reliance on individual environmentally damaging approaches and to provide sustained management of pest populations. IPM was developed for agriculture, where decisions are based on cost-benefit analyses that compare the cost of control with the economic value of crops protected. For vector-borne diseases, decisions are more appropriately based on cost-effectiveness (or cost-efficiency) analyses that integrate management methods, so as to prevent the greatest number of possible human cases of disease at a given cost (Phillips, Mills & Dye, 1993; Ginsberg & Stafford, 2005). Efficient management of TBDs maximizes the number of human cases prevented with available resources and minimizes dependence on broad-spectrum approaches to control that tend to be environmentally damaging. However, these analyses require information from field trials of various management methods and from models of transmission dynamics that use each potential combination of techniques to estimate the costs and the number of cases prevented (Mount, Haile & Daniels, 1997). Given the many tick control techniques currently available and the numerous novel techniques being developed, it is important to develop the theory and practice of efficient integration of methods, so that these techniques can be applied in such a manner as to most effectively prevent human disease.

10.12. Conclusions

The following conclusions can be drawn about public activities, surveillance and management, and research.

10.12.1. Public activities

Conclusions that relate to public activities cover three areas, as follows.

1. A accurate and practical information about ticks and TBDs should be readily and widely available to health professionals, pest management professionals and the general public. Printed and online information about the effects on health, personal protection and preventive measures would be especially useful, as would information on tick biology and behaviour and on effective control strategies.
2. Specific education and health promotion programmes should be provided for people with occupational and recreational exposure to ticks and TBDs. These programmes should emphasize the threat of ticks, TBDs of public health importance, personal protection measures against tick bites, tick avoidance, tick removal, available control measures and medical follow-up in case of exposure.

3. Development and design of human residential and recreational areas should routinely consider TBDs as part of the planning effort. Public health experts (including specialists on TBDs) should be consulted early in the planning process.

10.12.2. Surveillance and management

Conclusions that relate to surveillance and management cover two areas, as follows.

1. Reporting programmes should be developed for major endemic TBDs, where these currently do not exist. These programmes can include passive or active disease surveillance, or both.

2. Management programmes should be implemented for TBDs. Such programmes should efficiently target the sites where encounter rates between people and infected ticks are greatest. Surveillance and specific public education should be part of these programmes.

10.12.3. Research

Conclusions that relate to research cover three main areas, as follows.

1. Research is needed on new, emerging, and resurging TBDs, including: epidemiology, vector biology, disease-transmission competence of potential vector and reservoir species, transmission dynamics and geographical distribution; and anthropogenic, environmental, and climatic factors that affect emergence, re-emergence and geographical spread of ticks and TBDs.

2. Research is also needed on principles and strategies of tick and TBD management, including least toxic approaches, strategies for well-targeted integrated tick management and optimal approaches in urban, periurban and rural areas, especially in hyperendemic disease foci.

3. Research should be encouraged and carried out on new vaccination strategies, chemoprophylaxis and treatment regimens for TBDs of public health importance.

References

Beninati T et al. (2002). First detection of spotted fever group rickettsiae in Ixodes ricinus from Italy. Emerging Infectious Diseases, 8:983–986.

References

Beninati T et al. (2002). First detection of spotted fever group rickettsiae in Ixodes ricinus from Italy. Emerging Infectious Diseases, 8:983–986.

References

Beninati T et al. (2002). First detection of spotted fever group rickettsiae in Ixodes ricinus from Italy. Emerging Infectious Diseases, 8:983–986.

Sources cited in this review are nearly all from peer-reviewed scientific literature. Some CDC and WHO reports, several review articles and book chapters, and some recent information (on epidemiological trends, for example) from presentations at scientific conferences and from web sites of broadly recognized organizations (such as ProMED) are also cited.

Fukunaga M et al. (1996). Borrelia turdus sp. nov. and Borrelia turdae sp. nov. found from ixodid ticks in Japan: rapid species identification by 16S rRNA gene-targeted PCR analysis. M icrobiology and Immunology, 40:877–881.

Gothe R (1999). Rhipicephalus sanguineus (Ixodidae): Häufigkeit der Infestation und der serologischen Diagnostik bei Hunden in Deutschland; eine epidemiologische Studie und Betrachtung [Rhipicephalus sanguineus (Ixodidae): frequency of infestations and serological infections transmitted by this tick species in dogs in Germany; an epidemiological study and consideration]. Wiener Tierärztliche Monatsschrift, 86:49-56 (in German).

Wagner B (1999). Borrelieose und FSME: Gefahr durch Zeckenstiche! Der Hausarzt, 8:34.

