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Abstract. Bayesian models provide a structure for studying collections of parameters 
such as are considered in the investigation of communities, ecosystems, and landscapes. 
This structure allows for improved estimation of individual parameters by considering them 
in the context of a group of related parameters. Individual estimates are differentially 
adjusted toward an overall mean, with the magnitude of their adjustment based on their 
precision. Consequently, Bayesian estimation allows for a more reliable ranking of param- 
eters and, in particular, a more credible identification of extreme values from a collection 
of estimates. 

In Bayesian models, individual parameters are regarded as values sampled from a spec- 
ified probability distribution, called a prior. The requirement that the prior be known is 
often regarded as an unattractive feature of Bayesian analysis and may be the reason 
Bayesian analyses are not frequently applied in ecological studies. Empirical Bayes methods 
provide an alternative approach that incorporates the structural advantages of Bayesian 
models while requiring a less stringent specification of prior knowledge. Empirical Bayes 
methods require only that the prior be in a certain family of distributions, indexed by 
hyperparameters that can be estimated from the available data. This structure is of interest 
per se, in addition to its value in allowing for improved estimation of individual parameters; 
for example, hypotheses regarding the existence of distinct subgroups in a collection of 
parameters can be considered under the empirical Bayes framework by allowing the hy- 
perparameters to vary among subgroups. 

We describe the empirical Bayes approach in application to estimation of proportions, 
using data obtained in a community-wide study of Brown-headed Cowbird parasitism rates 
for illustration. Empirical Bayes estimates identify those species for which there is the 
greatest evidence of extreme parasitism rates. 

Subgroup analysis of our data on cowbird parasitism rates indicates that parasitism rates 
for neotropical migrants as a group are no greater than those of residentlshort-distance 
migrant species in this forest community. Our data and analyses demonstrate that the 
parasitism rates for certain neotropical migrant species (Wood Thrush and Rose-breasted 
Grosbeak) are remarkably low while those for others (Ovenbird and Red-eyed Vireo) are 
remarkably high. 

Key words: Bayes; Brown-headed Cowbirds; empirical Bayes; Molothrus ater; neotropical mi- 
grants; parasitism; Wood Thrush. 
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recapture data (Smith 1991), to toxicity data (Piegorsch 
1994), to summary analyses of avian trends (Peterjohn 
et al. 1994, Link and Sauer 1995), and to identification 
of extremes in collections of parameter estimates (Link 
and Sauer 1996). Given current interest in assessing 
the relative effects of environmental insults, ecological 
competitors, and disturbances on collections of species 
within a community or landscape, empirical Bayes 
methods seem well adapted to fill a niche in the toolbox 
of ecological methods. 

In this paper. we apply empirical Bayes methods to 
the estimation of proportions. Many fundamental de- 
scriptions of biological systems involve proportions: 
survival rates, nest predation rates, breeding rates, and 
parasitism rates are a few examples. To illustrate the 
application of empirical Bayes modeling to propor- 
tions, we use data obtained in a community-wide study 
of parasitism by Brown-headed Cowbirds (Molothrus 
ater). 

Conservation biologists have been concerned that 
cowbird parasitism is a major factor reducing breeding 
success of neotropical migrants in North America (Brit- 
tingham and Temple 1983, Robbins et al. 1989, Ter- 
borgh 1989, Robinson 1993). This concern has prompt- 
ed a number of studies comparing the incidence and 
effect of brood parasitism on different host species 
(Thompson 1993, Rothstein and Robinson 1994, Cook 
et al. 1996). The data we examine consist of observed 
cowbird parasitism rates for 26 host species in a forest 
habitat (Hahn and Hatfield 1995, 1996). Host species 
considered include 18 neotropical migrant species and 
8 residentlshort-distance migrant species; we tested for 
differences in average parasitism rates between these 
two groups. 

In the data that we consider, and typically in similar 
studies, there is considerable variation in the sample 
sizes of nests of host species. This creates difficulties 
in ranking parasitism rates. To give an extreme ex-
ample, suppose that only one nest is observed for some 
potential host species. The observed parasitism rate 
will be either 0 or 100%; clearly, it would be inappro- 
priate to say that such a species was the least or most 
severely affected. The empirical Bayes methods de- 
scribed in this paper account for differences in sample 
sizes among host species, providing an improved rank- 
ing of parasitism rates and allowing for a more appro- 
priate identification of the host species for which there 
is the greatest evidence of extreme parasitism rates. 

Suppose that we wish to create a list of host species, 
ranking them by their parasitism rates. For each of a 
number of species. data available are observed para- 
sitism rates in random samplings of nests. In particular, 
three of five nests for Species A (60%), and 19 of 50 
nests for Species B (38%), are parasitized. 

We would place little confidence in the statement 
that the actual rate for Species A is higher than that 

for Species B (in fact, Fisher's test for equality of pro- 
portions yields a P value of 0.32, from which the hy- 
pothesis of equal rates is not rejected). Yet Species A 
would be placed higher than Species B in the ordered 
list of parasitism rate estimates. Is this ordering rea- 
sonable? 

The answer we give to this question will depend on 
our general knowledge of parasitism rates across spe- 
cies. If we knew that parasitism rates were typically 
close to, say, 55%, then the 38% observed for Species 
B might be taken as evidence of an exceptionally low 
rate for that individual species ( P  value = 0.0232 in 
testing H,,: rate for Species B = 55%), while that for 
Species A would be taken as nothing extraordinary; it 
would be reasonable to assume that the actual rate for 
Species A is greater than that for Species B. 

On the other hand, suppose that the typical parasitism 
rate across species were known to be 20%. Then we 
would have evidence that Species B had an unusually 
high rate (P value = 0.0050 in testing H,: rate for 
Species B = 20Q), but we would not have evidence 
that Species A had an unusually high rate, despite the 
high observed rate of 60% ( P  value = 0.1024 in testing 
H,: rate for Species A = 20%). In this case we might 
suspect that the actual rate for Species B is higher than 
that for Species A. 

Thus, our impression as to whether the ordering of 
estimates for Species A and B is correct depends on 
our prior knowledge of the rates of parasitism among 
host species in general. Even with a less specific knowl- 
edge of typical parasitism rates than we have supposed, 
our impression regarding the ranking of estimates for 
Species A and B may be based on more information 
than the observed rates for these two species alone. It 
may be based on observed rates for a collection of 
species, of which the data for Species A and B are a 
subset. Then. our thinking would be guided by an un- 
stated hypothesis that there is a degree of similarity of 
rates within the group of host species. Thus, we ex- 
amine the data available for each species in light of an 
informal model of similarity across species. 

Clearly, there is a need to formalize the unstated 
hypotheses and informal models. Bayesian modeling 
and inference offers one such formalization. Bayesian 
methods are designed to incorporate prior knowledge 
of group structure in producing individual parameter 
estimates. A Bayesian analysis of cowbird parasitism 
rates for Species A and B would begin by specifying 
typical parasitism rates for a group of related species, 
summarized, perhaps, by their mean and variance. It 
then adjusts the estimates for Species A and B in light 
of this prior knowledge. 

Many biologists would be unwilling to make a priori 
claims regarding the mean and variance of parameters 
for a collection of species under investigation, and to 
them the Bayesian approach is not appealing. Empirical 
Bayes methods can be thought of as a step in the di- 
rection of Bayesian analysis, but requiring a less strin- 
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gent specification of prior knowledge. To describe em- 
pirical Bayes methods, however, we must begin with 
the Bayesian paradigm. 

We begin with a heuristic explanation of Bayes es- 
timation. Suppose that before having collected the data 
for Species A, we were required to provide an educated 
guess of its parasitism rate. If we could assume that 
the rate for Species A is not too different from those 
in a collection of species for which data are available, 
our best guess would be the average parasitism rate for 
those host species; the standard deviation among those 
rates would provide a measure of our uncertainty in 
this educated guess. To give a concrete example, sup- 
pose that the average parasitism rate for the collection 
of host species is known to be r = 20%, and that the 
standard deviation among these rates is T = 10%. We 
treat 20% as an "estimate" of the rate for Species A, 
and 10% as the standard deviation of this "estimate." 

Upon collecting data for Species A, we obtain a sec- 
ond estimate of the parasitism rate for Species A. Since 
five nests were encountered, of which three were par- 
asitized, this second estimate is $ = 60% with standard 
error: 

u(@)= d @ ( 1  - $)I5 = 21.9%; 

thus, the data tell us that the rate for Species A is likely 
to be near 60%, give or take 21.9%. We now have two 
estimates of the same quantity, one based on prior 
knowledge ( r  is referred to as the prior mean) and the 
other based on new observations. The usual expedient 
when we have two estimates of the same quantity is to 
combine estimates using a precision-weighted average. 
Under certain conditions (see The beta-birzomial mod- 
el)  the Bayes estimate for Species A is obtained in just 
this way. The Bayes estimate for Species A is: 

where 

is the weight placed on the prior mean. The Bayes 
estimate for Species A is therefore 26.9%. We note that 
the rate for Species A was very heavily adjusted, mov- 
ing 83% of the way from the raw estimate (60%) to 
the overall mean (20%). 

Carrying out similar calculations for Species B (for 
which 19 of 50 nests were found to be parasitized, so 
that 6= 38%, a(@) = 6.9%, and w = 0.32), the Bayes 
estimate for Species B is: 

@BBa,r,= 0 32 (20%) + 0.68 (38%) = 32.2% 

The rate for Species B was less severely adjusted than 
that for Species A, moving only 32% of the way from 
the raw estimate (38%) to the overall mean (20%). The 
estimate for Species A (based on a small sample size, 
N = 5) was heavily adjusted, while the more reliable 
estimate for Species B (based on N = 50) received a 
more moderate adjustment. 

A Bayesian analysis can be thought of as a combin- 
ing of existing knowledge with new knowledge (sample 
data), the two being combined in such a way as to 
account for the amount of confidence that is placed in 
each source of knowledge. The existing knowledge 
base and updated knowledge base are summarized by 
probability distributions describing the likely range of 
values for each unknown parameter; these are referred 
to as the prior and posterior distributions, respectively. 
Informally, the prior distribution can be thought as an 
approximation to the histogram of the true, unknown 
values of the parameters under investigation. There is 
a posterior distribution for each of the unknown pa- 
rameters, and it is to this that we would turn, as in- 
formed gamblers, for setting odds in betting on the 
value of the parameter given our updated knowledge 
base. 

Two other probability distributions encountered in 
describing Bayesian modeling are the samplirzg and 
marginal distt-ibutiorzs of the data used to update the 
knowledge base. The sampling distribution describes 
the variability of an observed statistic about an unob- 
served parameter value. Thus, the sampling distribution 
describes a second source of variation, the first source 
being the variability among species as described by the 
prior distribution. The marginal distribution describes 
the totality of the variation in the data, incorporating 
the variability described by the prior and sampling dis- 
tributions. For a detailed accounting of the Bayesian 
approach to statistical modeling, the reader is referred 
to the text by Box and Tiao (1992). 

The empirical Bayes methods we describe use the 
same models as Bayesian methods, and similar ana- 
lytical procedures. Raw estimates are adjusted toward 
an overall mean by a factor based on the precision of 
the raw estimate relative to the variability among pa- 
rameters in the group. The difference between and 
Bayes and empirical Bayes analyses is that in the latter 
the overall mean and the variability among parameters 
in the group are now estimated from the data, rather 
than postulated on the basis of prior knowledge. Rather 
than requiring a complete specification of the prior dis- 
tribution, we require only a partial specification of the 
prior distribution; namely, that it be a member of a 
known family of distributions. We might not know spe- 
cifically what the prior distribution looks like, but we 
are willing to make a general statement about its form. 

Thus the prior distribution is assumed to be a mem- 
ber of a specified family of distributions, but charac- 
terized by unknown parameters. (We might, for ex-
ample, specify that the prior is a normal distribution, 
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Proportion 

FIG. 1 .  Four beta densities, with common mean .rr = 0.35, 
and spread parameter 0 = 1 ,  4. 16, and 50. The larger the 
value of 0, the greater the variability in the distribution. The 
numbers on the x-axis scale (density) are unitless. 

with unknown mean and variance.) To distinguish the 
parameters of the prior from the parameters of primary 
interest (which are a sampling from the prior). we refer 
to the parameters of the prior as hxperpat-ainetet-s. In 
our example, cowbird parasitism rates are the param- 
eters, and hyperparameters describe the distribution of 
these rates across species. The first stage of an empir- 
ical Bayes analysis is to estimate the unknown hyper- 
parameters and thereby to obtain an estimate of the 
prior distribution. 

We now turn to an explicit description of a model 
that is useful for empirical Bayes estimation of pro- 
portions. We begin by assuming that the prior distri- 
bution is in the class of beta distributions, i.e., those 
having density functions of the form: 

where a and p are positive numbers and r(.)is the 
gamma function. A Bayesian analysis requires a com- 
plete specification of the prior, in which the parameters 
a and p are assumed to be known; in the empirical 
Bayes framework, a and P are unknowns to be esti- 
mated. 

For the present application, it is useful to re-pa- 
rameterize the prior distributions by setting IT = a / ( a  
+ p) and 0 = (a + p). Then, if P is a random variable 
to be sampled from a beta distribution, its mean is E(P)  
= n and its variance is Var(P) = n(1 - IT)/(^ + 0). 
Expressed in terms of our cowbird parasitism data, the 
hyperparameters r and 0 are descriptive of the collec- 
tion of true parasitism rates for host species. Roughly 
speaking, the parameter n is the average parasitism rate 
across species and the parameter 0 controls the range 
of values of parasitism rates among species. The pa- 

rameter 0, which we refer to as the spread parameter, 
is more useful for comparison of distributions than is 
the variance, since the variance depends on the mean. 

The choice of a beta prior is made primarily for 
reasons of technical convenience, but should not be 
regarded as an overly restrictive assumption; the beta 
family of distributions is very flexible. Figs. 1 and 2 
illustrate beta distributions with various values of IT 

and 0. 
For an individual host species, we let X denote the 

number of parasitized nests in a random sample of N 
nests. Given that the true parasitism rate is P, X is 
assumed to be a binomial random variable with mean 
N.P (the observed parasitism rate is = XIN). Taken 
together, the assumptions of a beta prior and binomial 
sampling distribution comprise the beta-bitzomial mod- 
el. 

Under the beta-binomial model, the number of par- 
asitized nests for a randomly selected species has dis- 
tribution function glven by: 

this is the marginal distribution. In an empirical Bayes 
analysis, the marginal distributions are used to estimate 
the hyperparameters. Given data for tz species, (X,. N,). 
i = 1 ,  2 ,  . . . , n, maximum likelihood estimates of the 
hyperparameters r and 0 are obtained by maximizing 
the loglikelihood: 

as a function of r and 0. Maximum likelihood estimates 
are not available in closed form; they must be obtained 
using numerical optimization methods such as the 

Proportion 

FIG. 2. Four beta densities, with common spread param- 
eter 0 = 10. and means T = 0.12, 0.20. 0.60, and 0.70. Range 
of possible values of spread parameter. unlike that of variance. 
is not restricted by the values of the mean and hence is more 
useful in characterizing dispersion of beta distributions. The 
numbers on the \-axis scale (density) are unitless. 
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Newton-Raphson method. As a byproduct of Newton- 

Raphson optimization of the loglikelihood, one can ob- 

tain information matrix-based estimates of variances 
and covariances of the estimated hyperparameters (for 
details, see Burnham et al. 1987). 

Alternatively, n and 0 can be estimated by moment 
estimators as described in Appendix 1.These estimators 
are slightly less efficient than the maximum likelihood 
estimators, but they are much more easily calculated. 

Given the beta-binomial model. we may address the 
question of how new knowledge (X and N)can be used 
to update our knowledge base (the prior distribution, 
f @ ) ) .  The Bayesian response is given by the posterior 
distribution of P, given p. Given the model structure 
specified, the posterior distribution of P is also of the 
beta family of distributions, with the parameters a and 
p replaced by a + X and P + N - X, respectively. 
Expressed in terms of the (T, 0) parameterization, the 
posterior distribution of P given p is therefore: 

The mean of the posterior distribution (also described 
as the expected value of P given 6)is: 

This quantity is the Bayes estimator of P. It is a weight- 
ed average of the raw estimate 6and the overall mean 
T; the weights on T and 0 are inversely proportional 
to Var(P) and the sampling variance of p. 

To obtain empirical Bayes estimates, we need only 
substitute estimates of the hyperparameters T and 0 in 
the formula for the Bayes estimator. We thus define an 
empirical Bayes estimate of a proportion P by: 

the circumflexes """ on n and 0 indicating that these 
quantities are estimates. 

We note also that the estimated hyperparameters can 
be used to estimate the posterior distribution for P, from 
which we can make probability statements regarding the 
likely range of values for P. Substituting the hyperpar- 
ameter estimates for the true values in the formula for 
the posterior distributions, we obtain the estimated pos- 
terior distribution f+,R(PI jj). We describe the use of the 
estimated posterior distribution in our application of 
these methods to cowbird parasitism data. 

Table 1 provides sample sizes (N)  and numbers par- 
asitized ( X )  for a sampling of nests of 26 host species 
in an eastern forest community. The collection of these 
data is described elsewhere (Hahn and Hatfield 1995, 
1996); here we note only that the data represent totals 
over a 3-yr study and were pooled after finding no 
significant year effects in a loglinear analysis. 

Our empirical Bayes analysis treats X, (the data for 
species i) as a binomial random variable with parameter 
P,, with P, sampled from a beta distribution. The bi- 
nomial assumption requires independence of sampled 
nests: the parasitism status of a given nest is not related 
to the parasitism status of other nests. Violations of 
this assumption could result from pooling data across 
sites or date of observation. The assumption that the 
P, are a sampling from a beta distribution is not terribly 
restrictive, but could be violated by the existence of 
distinct subgroups of species. We address the evalua- 
tion of this assumption in the next section. 

The moment (Mom) estimators of the hyperpa-
rameters are not substantially different from the max- 
imum likelihood estimators. We have: 

the bracketed quantities are information matrix-based 
estimates of the standard errors of the maximum like- 
lihood estimators (MLEs). The choice of estimators had 
little effect in creating the empirical Bayes estimates 
for the 26 species: the absolute difference between em- 
pirical Bayes estimates calculated with the two sets of 
estimated hyperparameters averaged 0.7% and never 
exceeded 1 . 7 7 ~ .  

Fig. 3 gives plots of the estimated posterior distri- 
butions for four species evidencing distinct levels of 
parasitism and of various sample sizes: Wood Thrush, 
Worm-eating Warbler, Hooded Warbler, and Red-eyed 
Vireo. We note that the posterior distribution for Wood 
Thrush is considerably less dispersed than that of the 
other species (Fig. 3). This is a consequence of the 
larger sample of Wood Thrush nests (N = 105); the 
posterior distribution for Hooded Warbler (N = 1) is 
only slightly different from the estimated prior. 

The estimated posterior distributions can be used to 
create intervals similar to confidence intervals for the 
parasitism rates (Table 1 ). For example. the central 9 5 8  
of the estimated posterior distribution describing rates 
for Worm-eating Warbler rates covers the range 
(0.1085, 0.4560). Thus. supposing that the prior dis- 
tribution for parasitism rates (across species) is beta 
with parameters T = 0.297 and 0 = 5.898; given the 
observed data, we would place 95% confidence on the 
statement that the rate for Worm-eating Warbler is in 
the range (0.1085, 0.4560). This interval, sometimes 
called a "95% credibility interval" so as to distinguish 
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TABLE 1. Cowbird parasitism data for 26 host species in a forest community. 

Bayeqian 95% 
Host X N 6 PEB C.I. Rank, Rank, 

Wood Thrush (Hylocichlu n~ustelitzu) 10 105 0.095 0.108 (0.057. 0.171) 8 1 
Rose-breasted Grosbeak (Pheucricu.~ ludovicianus) 1 20 0.050 0.1 13 (0.025. 0.253) 7 2 
Blue-gray Gnatcatcher (Polioptilu cnerulen) 0 7 0.000 0.136 (0.020. 0.365) 3.5 3 
Eastern Phoebe (Sayorni.~ phoebe) 11 78 0.131 0.153 (0.085, 0.233) 11 3 
Northern Cardinal (Carilinn1i.c curditzn1i.c) I 10 0.100 0.179 (0.042. 0.387) 9 5 
Rufous-sided Towhee (Pipilo en.throphthnlmua) 2 15 0.133 0.183 (0.055. 0.366) 10 6 
Eastern Wood-pewee (Contopua virena) 0 4 0.000 0.186 (0.027, 0.451) 3.5 7 
Great-crested Flycatcher (Myinrchu.~ crinirus) 0 2 0.000 0.227 (0.034. 0.533) 3.5 8.5 
Warbling Vireo (Vireo gllvua) 0 2 0.000 0.227 (0.033. 0.533) 3.5 8.5 
Veery (Carharu.~ fu.scesce~z.c) 18 74 0.243 0.247 (0.160, 0.346) 12 10 
Black-capped Chickadee (Purus nrricnpillus) 0 1 0.000 0.256 (0.039. 0.586) 3.5 11.5 
Yellow-rumped Warbler (Dendroicu corotzntn) 0 1 0.000 0.256 (0.039. 0.586) 3.5 11.5 
Worm-eating Warbler (He1mirhero.c vernzivorus) 4 16 0.250 0.263 (0.109, 0.456) 13.5 13 
Carolina Wren (Thnothorua luiloviciutzus) 1 4 0.250 0.277 (0.069. 0.561) 13.5 14 
Chestnut-sided Warbler (Dendroica pensylvanica) 1 3 0.333 0.305 (0.077,0.606) 16.5 15.5 
Solitary Vireo (V~reo  soliturius) 1 3 0.333 0.305 (0.077.0.606) 16.5 15.5 
American Redstart (Seropkaga ruricilla) 26 81 0.321 0.319 (0.226, 0.419) 15 17 
Hooded Warbler (Wilaonin citritzu) 1 1 1.000 0.382 (0.102. 0.716) 25.5 18.5 
Yellow-throated Vireo (Vireo jnvij5rona) 1 1 1.000 0.382 (0.102.0.716) 25.5 18.5 
Louisiana Waterthrush (Seiuru.~ moracilla) 6 13 0.429 0.383 (0.193, 0.595) 18 20 
Least Flycatcher (Empidonax minimus) 3 6 0.500 0.389 (0.154, 0.655) 21.0 21 
Hermit Thrush (Ccirhnru.~ gurrurus) 8 18 0.444 0.402 (0.223. 0.596) 19 22 
Scarlet Tanager (Piranga ol~vacea) 4 8 0.500 0.403 (0.179, 0.652) 21.0 23 
Black-and-white Warbler (Mniorilra varia) 5 10 0.500 0.415 (0.200, 0.649) 21.0 24 
Ovenbird (Seiurua nurocnpillua) 2 1 37 0.568 0.523 (0.378. 0.668) 23 25 
Red-eyed vireo (Vireo olivaceous) 16 24 0.667 0.583 (0.408, 0.737) 23  26 

Note: X = number parasitized nests: N = sample size: 6= XIN: CEB= empirical Bayes estimate. using maximum likelihood 
estimators of hyperparameters. Bayesian 95% credibility intervals (C.I.) are lower and upper endpoint of central 95% interval 
in estimated posterior distribution. Rank, = rank based on raw estimates 6 :  Rankz = rank based on empirical Bayes estimates 
P,,. (Tied ranks replaced by averages.) 

it from confidence intervals, is shorter than the usual timation by considering the parameter in the context 
approximate confidence interval: of the group. 

6 ? 1.96 a($) 
It may be desirable to account for the uncertainty in 

the estimation of the posterior distribution, perhaps by 
(0.0378, 0.4620). 

a lengthening of the credibility intervals. Two compu- 
It is also shorter than the exact confidence interval tationally intensive procedures for doing so are de-
(0.0727, 0.5238) obtained by inverting the binomial scribed in Appendix 2. For the present example. and in 
distribution. The shorter range of values expresses the general when the prior parameters are reasonably well 
increased knowledge brought to bear on parameter es- estimated. the effects of such procedures are slight. 

TESTINGFOR SUBGROUPS 
15 

P The assumption of a common prior distribution for 
all of the proportions being investigated may be un- 

0- Wood Thrush tenable. There may be reason to believe that propor- 
W Worm-eating Warbler 
C Hooded Warbler tions within distinct subgroups are more similar to each 
+Red-eyed Vireo other than to the collection as a whole. For example, 
.-.Estimated Prior 

the host species in the cowbird data set under consid- 
eration can be classified as to migratory status (neo- 
tropical migrants vs. residentslshort-distance mi-
grants). In such a case, we might consider allowing 
distinct prior distributions for distinct subgroups. The 
prior distributions might be completely unrelated, or 
partially related, in the sense of having some common 
values of hyperparameters. 

Proportion Parasitized To illustrate the use of distinct priors for distinct 
subgroups, we consider models relating the hyperpa- 

FIG.3. Distributions of cowbird parasitism rates. Esti- 
mated prior distribution and corresponding estimates of pos- rameters .sr and to the migratory status of the 'pecies' 

terior distribution rates for four host species. Symbols are There are four possible models describing the two dis- 
aligned with posterior means. tinct priors, each of which is described by a vector (0,. 
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TABLE2. Maximum likelihood comparison of subgroup models. Values in parentheses are information matrix-based esti- 
mates of standard errors of parameter estimates. 

Parameter estimates (estimated standard errors) 
Model 81 

1. (01, 82% T I ,  ~ 2 )  5.63 (3.00) 
2. (8. 8. n l .  TT:) 7.59 (3.56) 
3.  (8,. 8:. ~ r ,TT) 5.80 (3.01) 
4. (8. 8, ~ r .TT) 6.96 (3.18) 

Summary of likelihood ratio tests 

02 T I  

28.33 (32.02) 
7.59 (3.56) 

13.19 (14.21) 
6.96 (3.18) 

0.324 (0.056) 
0.3 19 (0.05 1) 
0.281 (0.046) 
0.293 (0.033) 

~TT: MLL 

0.205 (0.053) 
0.227 (0.07 1 ) 
0.28 1 (0.046) 
0.293 (0.043) 

-52.0262 
5 2 . 7 8 2 3  
5 3 . 0 3 3 5  
-53.3048 

df P value 

I 
1 
I 
1 
2 

0.22 
0.15 
0.3 1 
0.37 
0.28 

Models compared Hi, 

2 vs. I 8 ,  = O 2  
3 vs. 1 r I= rTT2 
3 vs. 2 TT? = n2,  given 8 ,  = R 2  
3 vs. 3 8 ,  = R2, given r I= T T ~  

3 vs. I 8 ,  = 0 2 a n d ~ ,  = m 2  

x2 
1.5122 
2.0336 
1.0450 
0.5226 
2.5572 

Note: Subscripts "1" on parameters correspond to priors for neotropical migrants; subscripts "2" correspond to resi- 
dentlshort-distant migrants. MLL = maximum log-likelihood. 

O , ,  n l ,  n,). The model ( 0 ,  0 ,  I T , ,  n2),for example, re- 
quires that the two prior distributions have the same 
relative spread. but allows the means to differ. 

Maximum likelihood estimation (based on the mar- 
ginal distributions of the observed numbers of nests 
parasitized) can be used to obtain parameter estimates. 
and the models compared by likelihood ratio tests. Pa- 
rameter estimates and likelihood ratio test results for 
the parasitism rates we have investigated here are given 
in Table 2. 

The parasitism rates for the subset of neotropical mi- 
grants appear to be slightly higher and less spread than 
those for short-distance migrantlresident species, but the 
differences between groups were not statistically sig- 
nificant (P value = 0.28; Table 2). We thus conclude 
that the best estimates of parasitism rates for these spe- 
cies are those that have been adjusted assuming a com- 

It is instructive to compare these empirical Bayes es- 
timates to those obtained assuming that distinct sub- 
groups exist. We denote these latter as $,,,. with ref- 
erence to model 1 of Table 2. The estimated prior dis- 
tributions for the two subgroups can be compared by 
inspection of Fig. 4; Table 3 displays both sets of em- 
pirical Bayes estimates. As would be anticipated, there 
are generally only minor differences between the two 
sets of empirical Bayes estimates. and these are most 
notable for the species with the smallest sample sizes. 
The empirical Bayes procedure heavily adjusts estimates 
based on small sample sizes toward their group means. 
Thus, the difference between the two sets of estimates 
is greatest for those species that are most heavily ad- 
justed (i.e., those with small N). 

One species for which @,,, differs substantially from 
@,,, is the Hermit Thrush. Considered among the entire 

mon prior distribution. For simplicity, we refer to these 
estimates as o,,, with reference to model 4 of Table 2. 

Proportion Parasitized 

FIG.3.  Estimates of prior distributions in subgroup anal- 
ysis. Estimated prior for resident and short-distance migrants 
is more peaked and has lower mean than that for neotrop~cal 
migrant species. but not significantly different. 

group of host species. our best estimate of the rate for 
Hermit Thrush was 40%, while considered among the 
residentlshort-distance migrants our best estimate of the 
rate was 30%. This difference is simply explained by 
noting that the raw estimate for Hermit Thrush is ex- 
ceptionally high relative to the prior distribution for 
short-distance migrantslresidents: it is high relative to 
the combined group as well. but not as exceptionally so. 
Thus, the rate is more heavily adjusted in the former 
context than in the latter. This underscores the point that 
empirical Bayes estimates are context specific; they are 
based on our understanding of an individual species as 
a member of a group. Since the likelihood ratio test did 
not reject the model ( 0 ,  0 ,  I T ,  I T )  in favor of the model 
( 0 , , O, ,  n l ,  n,), we are inclined to place more credence 
in the estimate for Hermit Thrush in the context of the 
entire group, i.e., the rate of 40%. 

Empirical Bayes analyses incorporate the structural ad- 
vantages of Bayesian models without requiring the com- 
plete specification of a prior distribution. Like Bayesian 
analyses, empirical Bayes analyses allow for improved 
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TABLE3. Comparison of estimates of parasitism rates 

Host 	 X N b DEB, $EBI  

A) Neotropical migrants 
Wood Thrush (Hylocichla musrelitzu) 10 105 0.095 0.108 0.107 
Rose-breasted Grosbeak (Pheucricu.~ luiloviciunus) 1 20 0.050 0.113 0.1 10 
Blue-Gray Gnatcatcher (Polioprilii cuerulea) 0 7 0.000 0.146 0.145 
Eastern Wood-pewee (Cotztopus vireiz.~) 0 3 0.000 0.186 0.190 
Great-crested Flycatcher (Myiarckus criniru.~) 0 2 0.000 0.227 0.239 
Warbling Vireo (Vireo gilvus) 0 2 0.000 0.227 0.239 
Veery (Carhurus fuscescen.c) 18 73  0.243 0.237 0.239 
Worm-eating Warbler (He1n1ithero.t vermivoru.~) 4 16 0.250 0.263 0.269 
American Redstart (Setophclgcl ruticillu) 26 81 0.321 0.319 0.321 
Chestnut-sided Warbler (Detzdroica pensylvnnicu) 1 3 0.333 0.305 0.327 
Louisiana Waterthrush (Seiuru.~morucillu) 6 13 0.329 0.383 0.399 
Least Flycatcher (Einpidonn.~miizirnus) 3 6 0.500 0.389 0.415 
Yellow-throated Vireo (Vireo ,fiavfrotza) 1 1 1.000 0.382 0.326 
Hooded Warbler ( Wilsoiziu citriizcz) 1 1 1.000 0.382 0.326 
Scarlet Tanager (Pirutzgn olivacea) 4 8 0.500 0.403 0.427 
Black-and-white Warbler (Mniotilta vclria) 5 10 0.500 0.415 0.337 
Ovenbird (Seiuru.~ clurocnpillua) 21 37 0.568 0.523 0.535 
Red-eyed Vireo (Vireo olivclceous) 16 23 0.667 0.583 0.601 

B) 	Residentslshort-distance migrants 
Eastern Phoebe (Sayorizi.c phoebe) 11 78 0.141 0.153 0.158 
Northern Cardinal (Curdina1i.c cardinalis) 1 10 0.100 0.179 0.177 
Rufous-sided Towhee (Pipilo enrkropkrhulmua) 2 15 0.133 0.1 84 0.180 
Yellow-rumped Warbler (Dentiroicu coronclra) 0 1 0.000 0.256 0.198 
Black-capped Chickadee (Purus utricapillus) 0 1 0.000 0.256 0.198 
Carolina Wren (Thryothorua ludoviciutzua) 1 4 0.250 0.277 0.210 
Solitary Vireo (L7ireo .colirariua) 1 3 0.333 0.305 0.217 
Hermit Thrush (Carhurua gutrarus) 8 18 0.334 0.302 0.298 

Nore: X = number nests parasitized. N = number of nests sampled. J? = XIN, $,,, = empirical 
Bayes estimates under model 4 of Table 2 (i.e., assuming common priors across subgroups), 
bEBl= empirical Bayes estimates under model I of Table 2 (i.e.. allowing prior distributions 
to differ between subgroups). 

estimation of individual parameters by considering them tied. having the same observed rates. By contrast, the 
in the context of a group of related parameters; similarly, empirical Bayes estimates rank Black-and-white Warbler 
empirical Bayes analyses allow for a more credible iden- higher because a larger sample size provides stronger 
tification of extremes in the group of parameters. evidence of a distinction from the overall group mean. 

We have described the empirical Bayes analysis of pro- Empirical Bayes estimates discount the extreme val- 
portions assuming an underlying beta-binomial model. ues of the two species with N = 1 and 100% observed 
Our empirical Bayes analysis of cowbird parasitism rates parasitism rates (Hooded Warbler and Yellow-throated 
leads us to identify Wood Thrush as the least frequently Vireo) and moved them toward the middle, lowering 
parasitized species in the forest community we studied. them in rank from 25.5 to the rank of 18.5; the two 
Seven other species had lower observed parasitism rates, species with zero parasitism and N = 1 (Black-capped 
but these rates were based on small sample sizes (five of Chickadee and Yellow-rumped Warbler) were similarly 
the seven species had sample sizes <5). Our finding of moved from ranks of 3.5 to ranks of 1 1.5. 
a low parasitism rate for Wood Thrush in this community We believe that the empirical Bayes approach will be 
provides an interesting contrast to Robinson's (1992) re- valuable in community studies using proportions like 
sults, which indicated very high parasitism rates on Wood parasitism, predation. or survival rates in multi-species 
Thrush in Illinois, leading him to speculate that this neo- rankings or in comparisons of subgroups. Empirical 
tropical migrant was targeted by cowbirds or was in some Bayes analysis will also be a useful tool in analyses at 
sense more vulnerable to parasitism. the landscape scale that compare parasitism or predation 

The ranking of other species in the community on the rates, for example, in different habitat types (Martin 
basis of empirical Bayes estimates indicates that the four 

1992), different vegetation types, or at different dis- 
most frequently parasitized species were Red-eyed Vireo 

tances to ecological features like powerlines, roads, 
(@ = 67%, N = 24; fiE, = 584%), Ovenbird (@ = 57%. 

clearcuts, or other edges (Brittingham and Temple 1983). 
N = 57, fi,, = 52%), Black-and-white Warbler (@ = 

50'2, N = 10. J?,,= 42%), and Scarlet Tanager (i, = 

50%. N = 8, fiEB= 40%), and in this agrees with the 
The authors thank the associate editor and two referees for 

ranking based on raw parasitism rates. It is interesting helpful suggestions made during the review of this paper. 
to note that in the ranking of species based on raw es- Thev also thank J. S. Hatfield. J. D. Nichols. and J .  R .  Sauer 
timates, Black-and-white Warbler and Scarlet Tanager are for their reviews of an early version of this paper. Special 
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APPENDIX 2 
ACCOUNTING ~ N C E R T A ~ N T Y  OFFOR IN ESTIMATION 

POSTERIORDISTRIBUTIONS 
Empirical Bayes analyses that do not somehow account for the 

uncertainty associated with the estimation of the hyperparameters 
have been criticized by some authors (Berger 1985, Laird and 
Louis 1987. Louis 1991). In particular, concern focuses on whether 
posterior intervals-the "credibility intervals" described above 
(see Appliccit~on cf enzpiricnl Bnyes clncl1ysi.s)-should be made 
longer so as to reflect this uncertainty. A simple and familiar case 
is the use of a t multiplier rather than a z multiplier in the con- 
struction of interval estimates for a normal mean, when the vari- 
ance is unknown. (From the Bayesian perspective, these intervals 
are credibility intervals for the normal mean. supposing a non- 

data (X,, N,) to obtain a bootstrap replicate estimate of the posterior 
distribution for specles i. This procedure is repeated a large number 
of times (say, 200): the average of these bootstrap replicate pos- 
terior distribut~ons is then used as the estimate of the posterior 
distribution. instead of the estimate based on the original hyper- 
parameter estimates. The credibility interval is taken from this 
new estimate of the posterior distribution. 

Another approach is to use "hierarchical Bayes" models in 
which the hyperparameters themselves are regarded as sampled 
from a "hyper-prior" distribut~on. To illustrate. we treated the palr 
(7,8) as having been sampled from a uniform distribution over 

informative prior distribution for the mean. The prior diatr~but~ons the rectangle [O. 16, 0.421 X [O. 16.51. (These ranges were selected 
for the variance are a point mass on the true variance for the z 
interval. and a nonlnformative prior for the r interval. A detailed 
discussion of the Bayesian interpretation of these intervals is given 
by Box and Tiao 1992.) 

In this Appendix we describe two methods for adjusting the 
credibility intervals so as to reflect our imperfect knowledge of 
the prior parameters. These methods are applicable in many set- 
tings; we describe them in the context of the beta-binomial model. 

The first method is via an "empirical Bayes bootstrap" (Laird 
and Louis 1987). The idea is to reproduce, as nearly as possible. 
the processes that generated the data in hand. with the goal of 
obtaining "replicate" collections of hyperparameter estimates. 
First. generate a bootstrap sample of proportions from the esti- 
mated prior beta distribution with parameters ii and 6 .  The ith of 
these. p,*. can be thought of as a replication of the "true" par-
asitism rate for species i. Next. for each i, generate a binomial 
random variable X,*, the number of successes in N, Bernoulli trials 
w ~ t hsuccess ratep,*. The collection of pairs (X,*, N,) is a bootstrap 
replication of the orig~nal data set, from which bootstrap replicate 
estimates of the hyperparameters can be obtained. These replicate 
estimates of the hyperparameters are then used with the original 

on the basis of the marginal l~kelihood funct~on for (7,  8): the 
likelihood of values outside of this rectangle is very small.) Next, 
we calculated 2500 distinct posterior d~stributions for species i. 
one for each pair (n. 8) on a 50 X 50 g r ~ d  covering the rectangle. 
We then took a weighted average of these. with weights given by 
the marginal likelihood of the pair (n.  8) .  Under the hierarchical 
Bayes model, this weighted average is a numerical integration 
approximating the posterior distribution for species i. For details 
on the hierarchical Bayes approach. the reader is referred to Berger 
(1985). 

One could consider a variety of prior distributions for (n, 0): 
for example, we carried out similar calculations to those described. 
but under the assumption that (n.  ln(0)) has a uniform hyperprior 
distribution over the rectangle I0.15, 0.451 X I0.5, 3.51. For the 
present data set, however. there was little difference in the results. 
The 9 5 9  credibility intervals are given in Fig. A l ,  along with the 
"naive intervals," which do not account for the uncertainty in the 
hyperparameters. The effects of the uncertainty in hyperparameters 
are seen to be slight. This is probably a consequence of the beta- 
binomial model and the precision with which the hyperparameters 
are estimated. and may not hold in general. 

0 4 	 8 12 16 20 24 28 

Rank of Empirical Bayes Estimate 

FIG. A l .  Graphical comparison of sets of four credibil~ty intervals and posterior means for cornbird parasitism rates of Table 
1.  The .r axis identities species by rank of parasitism rate based on empirical Bayes estimates p,, (Rank, in Table 1 ) .  Each 
group of four intervals consists of results obtained using (from left to right) Laird and Louis bootstrap. direct substitution of 
estimated hyperparameters in formula for posterior distribution, hierarchical Bayes modeling with noninformative priors on a 
and 0, and hierarchical Bayes modeling with noninformative priors on n and In(@). There is little difference among the results. 




