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Abstract. Many studies of pond-breeding amphibians involve sampling individuals
during migration to and from breeding habitats. Interpreting population processes and
dynamics from these studies is difficult because (1) only a proportion of the population is
observable each season, while an unknown proportion remains unobservable (e.g., non-
breeding adults) and (2) not all observable animals are captured. Imperfect capture prob-
ability can be easily accommodated in capture–recapture models, but temporary transitions
between observable and unobservable states, often referred to as temporary emigration, is
known to cause problems in both open- and closed-population models.

We develop a multistate mark–recapture (MSMR) model, using an open-robust design
that permits one entry and one exit from the study area per season. Our method extends
previous temporary emigration models (MSMR with an unobservable state) in two ways.
First, we relax the assumption of demographic closure (no mortality) between consecutive
(secondary) samples, allowing estimation of within-pond survival. Also, we add the flex-
ibility to express survival probability of unobservable individuals (e.g., ‘‘non-breeders’’)
as a function of the survival probability of observable animals while in the same, terrestrial
habitat. This allows for potentially different annual survival probabilities for observable
and unobservable animals.

We apply our model to a relictual population of eastern tiger salamanders (Ambystoma
tigrinum tigrinum). Despite small sample sizes, demographic parameters were estimated
with reasonable precision. We tested several a priori biological hypotheses and found
evidence for seasonal differences in pond survival. Our methods could be applied to a
variety of pond-breeding species and other taxa where individuals are captured entering or
exiting a common area (e.g., spawning or roosting area, hibernacula).

Key words: Ambystoma tigrinum; capture–recapture; detection probability; multistate models;
pond-breeding amphibians; survival probability; temporary emigration; unobservable state.

INTRODUCTION

Concerns about global amphibian declines have ac-
celerated research efforts to improve current population
assessment methods and understand the processes gov-
erning population trends. Most amphibian declines
have involved aquatic-breeding species, and this group
is believed to be especially at risk (Semlitsch 2000).
Interpreting population fluctuations of pond-breeding
amphibians is difficult because only a proportion of the
population of many species is observable; namely,
breeding adults, larvae, and metamorphs (Pechmann et
al. 1991). Adults and juveniles are often unobservable
because they are fossorial or otherwise not exposed to
capture except when adults migrate to ponds during the
breeding season.
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Traditional capture–recapture models provide a
means for estimating a variety of demographic param-
eters in the face of imperfect detection, provided that
all individuals in the population have a nonzero prob-
ability of detection. Transition to an unobservable state
and then back to an observable state is generally re-
ferred to as temporary emigration, a process that vio-
lates key assumptions for both open and closed-pop-
ulation capture–recapture models (Burnham 1993,
Kendall et al. 1997, Kendall 1999). Violations of these
assumptions can result in biased estimates of popula-
tion parameters. The presence, severity, and direction
of the bias depend on the proportion of unobservable
individuals and whether movement to and from the
observable state is completely random or Markovian
(Burnham 1993, Kendall et al. 1997, Kendall 1999).

Recently, multistate, mark–recapture (MSMR) meth-
ods have been employed to address temporary emi-
gration (Kendall et al. 1995, Lebreton et al. 1999, 2003,
Kendall and Nichols 2002, Schaub et al. 2004). MSMR
methods were originally developed to estimate move-
ment probabilities among spatial locations (Arnason
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FIG. 1. Modified ‘‘open’’ robust design for a K-period
study. Each primary period i contains two secondary samples,
representing capture occasions when the animal enters (j 5
1) and exits a common area such as a breeding pond (j 5 2).
Capture probability, pij, and survival probability in the pond,
Si1, are estimated over secondary samples. Transition prob-
abilities, , and survival probability outside the pond, Si2,rsci.

are estimated between primary periods.

1972, 1973, Brownie et al. 1993, Schwarz et al. 1993),
but more general MSMR models estimate transitions
between ‘‘stages’’ such as those defined by age, size,
or other life history states, such as juvenile, immature,
adult (Nichols et al. 1992, 1994, Fujiwara and Caswell
2002a). State or movement transitions are generally
treated as a Markov process, a type of stochastic pro-
cess in which the future state of the process depends
only on the present state, but not past states. Normally,
state transitions are treated as a first-order Markov
process, where the probability that an animal is alive
and in state s at time t 11 depends only on the state
of the animal at time t (i.e., one previous time step).
Second-order or ‘‘memory models’’ also exist
(Brownie et al. 1993), where the probability of tran-
sitioning between states in t to t 1 1 depends on the
state at time t and t 2 1. A standard assumption in
both cases is that all states are observable; transitions
to unobservable states are assumed to be permanent
and are confounded with survival probability esti-
mates (Kendall et al. 1997, Kendall 1999, Kendall and
Nichols 2002). Nevertheless, transition to an unob-
servable state is often a temporary condition for many
species. Fujiwara and Caswell (2002b) outline several
situations where these transitions are deterministic.
They note that transitions to unobservable states are
expected for immature stages or between successive
reproductive events.

Conceptually, the presence of an unobservable state
can be accommodated in MSMR models, where the
simplest case involves two states: one observable, one
unobservable. Nevertheless, estimation of demo-
graphic parameters requires various model constraints
(Kendall and Nichols 2002, Schaub et al. 2004) or
extra information to estimate detection probability,
either from an independent source or via Pollock’s

robust design (Pollock 1982). Under a standard open-
population design (one sample per season), parameter
estimation is possible only if one or more of the fol-
lowing types of constraints are made: reduce the order
of Markovian transition probabilities (e.g., assume
transitions are a completely random process) that per-
mits estimation of survival probabilities; impose par-
tial determinism on transition probabilities; assume
parameters are constant over time (Kendall and Nich-
ols 2002); or impose equality in some parameters be-
tween groups, such as sex (Schaub et al. 2004). In
almost all cases, survival probabilities for observable
and unobservable states must be assumed equal (Fu-
jiwara and Caswell 2002b, Kendall and Nichols 2002,
Schaub et al. 2004).

Alternatively, investigators have exploited aspects of
Pollock’s robust design to estimate transitions to and
from an unobservable state (Kendall and Nichols 1995,
Kendall et al. 1997). Pollock’s robust design consists
of two or more secondary samples within each primary
period (e.g., year or breeding season; Fig. 1). Pollock’s
original design assumed complete closure over sec-
ondary samples, but more recent models relax the geo-
graphic closure assumption, allowing individuals to en-
ter and leave the study area once during the primary
period. Schwarz and Stobo (1997) and Kendall and
Bjorkland (2001) developed two such open-robust de-
sign models for situations when only adult breeders are
observable, applying them to grey seals (Halichoerus
grypus) and hawksbill sea turtles (Eretmochelys im-
bricata), respectively. In both cases, the geographic
closure assumption is relaxed, allowing individuals to
enter and exit breeding or nesting areas in a staggered
fashion. Implicit in this approach is the need to model
arrival times within a season; however, the demograph-
ic closure assumption of no mortality or true recruit-
ment over secondary samples is retained. To our knowl-
edge, no method exists that relaxes demographic clo-
sure over secondary samples.

In this paper, we present a general method for ad-
dressing questions about population processes in sit-
uations where individuals are captured (or ‘‘resight-
ed’’) entering and leaving a common location (e.g.,
breeding area, spawning area, hibernaculum, up-
stream migration, movement through a road under-
pass). This design is common in studies of pond-
breeding amphibians (Gill 1978, 1985, Semlitsch et
al. 1996, Trenham et al. 2000, Hels 2002). Demo-
graphic closure may not be reasonable in these cases.
Thus, we extend open-robust design models (Schwarz
and Stobo 1997, Kendall and Bjorkland 2001), per-
mitting one entry and one exit from the study area
each primary period, such as a breeding season, and
permit mortality between secondary samples within a
breeding season. A key feature of this design is that
directly monitoring the arrival process removes the
need to model arrival times.
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STUDY DESIGN AND DATA

We begin with a standard capture–recapture study
where individuals can be uniquely identified. We as-
sume a special case of Pollock’s robust design (Pollock
1982) where the population is sampled for K primary
periods (i 5 1, 2, . . . K), each with two secondary
samples representing entering and leaving the common
area (Fig. 1, total number of sample occasions 5 2K).
For example, drift fences provide an effective tool for
sampling pond-breeding amphibians. Adult individuals
are captured in pitfall traps outside the fence migrating
to the breeding pond, representing the first secondary
sample ( j 5 1). Upon initial capture, animals are
uniquely identified by marking, tagging, or photo-
graphing individually unique characteristics (e.g., spot
pattern). Investigators may also record covariates such
as sex, size or age, and reproductive condition. Animals
are then released on the inside of the drift fence and
enter the breeding area. Animals are not at risk of cap-
ture again until they encounter the drift fence as they
exit the breeding area. The ‘‘exit’’ represents the sec-
ond and last secondary sample ( j 5 2). Previously
unmarked individuals captured upon exit represent an-
imals that were present but not captured entering the
breeding area (i.e., missed by the drift fence). Notice
that the ‘‘state’’ of the animal (e.g., breeder, nonbreed-
ers) is maintained over secondary samples; there are
no transitions between ‘‘states’’ within primary peri-
ods. In this sense, ‘‘geographic’’ or ‘‘state’’ closure is
maintained over secondary samples, while demograph-
ic closure is relaxed (animals may die while in the
breeding pond). This maintenance of geographic clo-
sure assumes animals enter and exit simultaneously,
but it is robust if survival probability is independent
of entry and exit times within the sampling season (i.e.,
if breeding individuals spend approximately equal
amounts of time in the pond where their survival prob-
ability is relatively constant within a given breeding
season).

Capture records for each individual are summarized
in a single matrix, commonly referred to as the ‘‘cap-
ture history form.’’ Each row of the matrix represents
an individual, and the columns represent all sampling
occasions. The individual entries in the matrix are ei-
ther ‘‘1’’s corresponding to sample occasions when the
individual was caught or seen and ‘‘0’’s if it was not
seen. For example, 00 10 00 11 represents a possible
capture history from a breeding area sampled for four
seasons (K 5 4). The animal(s) was first caught coming
into the breeding area in the second season, not cap-
tured exiting the area that season, not seen the third
season, and then captured both entering and exiting the
breeding area in the fourth season. A single matrix
containing capture histories from all individuals is the
basis for the MSMR analyses discussed in this paper.

STATISTICAL MODELS AND ESTIMATION

Parameter definition and notation

We consider a multinomial model with two states: r
5 observable (denoted as O) or unobservable (U). We
assume transitions are a first-order Markov process, but
also test models with completely random transitions.
We maintain notation of previous MSMR models that
includes four parameters: (probability that an animalrpij

is captured or detected during secondary sample j in
primary period i in state r, given it is alive, i 5 1, 2,
. . . , K; j 5 1, 2); (probability that an animal inrSi1

state r at sampling time i 5 i, j 5 1 [entering the
common area] survives until the next sampling time i
5 i, j 5 2 for i 5 1, 2, . . . , K); (probability thatrSi2

an animal in state r at sampling time j 5 2 [leaving
the common area] survives until the next sampling time
i 11, j 5 1 for i 5 1, 2, . . . , K; excluding i 5 K, j 5
2]; and (probability that an animal in state r at timersci.

i is in state s at time i 1 1, given the animal survived
from i to i 1 1, i 5 1, 2, . . . K 2 1).

For our model, where we include an unobservable
state and condition on first capture, 5 0 for all ij,Upij

and , , and are never used (the latter becauser r UOp S c11 K2 1

no animals are released from the unobservable state).
Unbiased estimation of population parameters is based
on the following summary statistics obtained from in-
dividual capture histories: (the number of markedrRij

animals released in state r during sampling occasion j
of primary period i [this is the number of animals
caught minus any animals that died during handling or
animals that were otherwise removed from the popu-
lation]) and (the number of marked animals re-rsmhl,ij

captured in state s at period i sample j that were last
captured in state r at period h sample l).

For our simple situation, only one state is observable,
so the superscripts on the above statistics are omitted.
Furthermore, unobservable animals have no probability
of detection, , so we use pij to denote time-specificUpij

detection probability for observable animals (e.g.,
breeders). Finally, transitions between observable and
unobservable states are possible between primary pe-
riods only, after an individual exits the common area.
Individuals maintain their ‘‘state’’ within primary pe-
riods (e.g., during the breeding, spawning, or nesting
season).

General model

We begin with a general model that includes time-
and state-specific parameters ( , , , , pij). ToO U OO UOS S c cij ij i i

illustrate the structure of the model, we give a subset
of expected cell frequencies (m11,ij) for recaptures of
marked animals released after the first capture occasion
(R11) of a three-season study:
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OE(m z R ) 5 R S p11,12 11 11 11 12

O O OOE(m z R ) 5 R S (1 2 p )S c p11,21 11 11 11 12 12 1 21

O O OOE(m z R ) 5 R S (1 2 p )S c11,22 11 11 11 12 12 1

O3 (1 2 p )S p21 21 22

O OE(m z R ) 5 R S (1 2 p )S11,31 11 11 11 12 12

OO O O OO3 [c (1 2 p )S (1 2 p )S c1 21 21 22 22 2

OO U U UO1 (1 2 c )S S c ]p1 21 22 2 31

O OE(m z R ) 5 R S (1 2 p )S11,32 11 11 11 12 12

OO O O OO3 [c (1 2 p )S (1 2 p )S c1 21 21 22 22 2

OO U U UO1 (1 2 c )S S c ]1 21 22 2

O3 (1 2 p )S p31 31 32

We assume that transitions occur between primary
periods only and that survival probability is depen-rSij

dent only on the state (r) the animal is in during primary
period i. Survival probabilities for unobservable ani-
mals, , cannot be directly estimated unless transitionUSij

probabilities are partially deterministic and modeled as
a second-order Markov process (Kendall and Nichols
2002). Specifically, if observable animals in season/
primary period i become obligate unobservable in pe-
riods i 1 1 and i 1 2, then state-specific survival prob-
abilities are estimable. This is the case for some large
marine mammals, such as right whales, when females
do not return to calving grounds for at least two years
after breeding (Fujiwara and Caswell 2002a). This spe-
cial case, however, only applies to a limited number of
populations. When populations do not exhibit this type
of partial determinism in their life history strategy, then
state-specific survival estimation is not possible.

Previous MSMR models simply assume that time-
specific survival probabilities are equal for observable
and unobservable animals, 5 . This assumptionU OS Sij ij

may be violated in situations where mortality is higher
inside a common area, such as a breeding pond or col-
ony, or lower inside some common refuge. In the case
of pond-breeding amphibians, survival for non-breed-
ers likely resembles that of breeders outside the pond,
where they face the same mortality risks in the terres-
trial habitat. Here, we describe a model with the same
basic requirement that survival probability for unob-
servable animals must be derived from survival prob-
ability of observable animals, but it has more flexibil-
ity. Because there are two survival probabilities for the
observable state corresponding to different habitats
( and ), can be based on either of them. ForO O US S Si1 i2 ij

example, assume breeding amphibians spend 14 wk in
a pond and 38 wk in terrestrial habitat, whereas non-
breeding amphibians spend the entire year in terrestrial
habitat. We assume that both groups face the same mor-
tality risks during the time spent in the terrestrial hab-
itat. A logical approach would be to base the estimate
of both and on , the survival probability forU U OS S Si1 i2 i2

breeders during the terrestrial part of their life cycle.
This is straightforward for the part of the season that

all amphibians are in the terrestrial habitat (i.e., set
5 ), but for the other part of the season the tem-U OS Si2 i2

poral scales have to be resolved. We set 5 ( ,U O aS S )i1 i2

where a is the ratio of time spent in the pond to the
time spent in the terrestrial habitat (e.g., a 5 14/38 in
the above example). A modified version of the program
MSSURVIV permits the practitioner to specify the
amount of time spent in and out of the common area
for each primary period (Jim Hines, unpublished pro-
gram [available online]).5 Resulting survival estimates
are reported as annual probabilities and must to be
adjusted for direct comparison to models where time-
specific survival probabilities are equal for observable
and unobservable animals. For example, assume that
survival probability for breeders inside and outside of
the pond was 5 0.80 and 5 0.80, respectively.O OS Si1 i2

Under the assumption of equal survival for each com-
ponent of the annual cycle, including 5 , annualU OS Si1 i1

survival probability is 0.64 regardless of breeding sta-
tus. Conversely, if we set 5 ( )a, where a 5 14/U OS Si1 i2

38, then annual survival probability for breeders is 0.64
and nonbreeders is 0.74. The modified version of the
MSSURVIV program would report two annual survival
probabilities 5 0.44 and 5 0.74 where 5OS* S* Si1 i2 i1

(0.44)14/52, 5 (0.74)14/52, 5 5 (0.74)38/52. TheseU O US S Si1 i2 i2

annual rates can be interpreted as the probability of
surviving an entire year if the specified seasonal sur-
vival corresponded to the entire year.

Methods: analytical–numerical approach

We explored whether model parameters were unique-
ly estimable or confounded in the likelihood function,
using the analytic–numeric method described by Burn-
ham et al. (1987; also see Kendall and Nichols 2002,
Schaub et al. 2004). Large-sample expected cell fre-
quencies for the mhl,ij summary statistics were computed
with known parameter values and initial marked sample
sizes Rij. The frequencies were used as ‘‘actual’’ data
for the program MSSURVIV, under an appropriately
parameterized model. The conditional maximum-like-
lihood estimates and standard errors produced repre-
sent the approximate expected values of the estimators
and their standard errors. Models were determined to
be without structural problems when all estimators (ex-
cept some parameters at the end of the study) were
unbiased to the fifth decimal place and had coefficients
of variation ,100% (Kendall and Nichols 2002). We
considered scenarios with four seasons (K 5 4) and
modeled survival probability for unobservable animals
in two ways. First, we assumed equal time-specific sur-
vival probabilities for unobservable and observable an-
imals. Next, we modeled survival probability of un-
observable animals as an exponential function of sur-
vival probability for observable animals outside of the
common area (see Statistical models and estimation:
General model).

5 ^www.mbr-pwrc.usgs.gov/software.html&
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TABLE 1. Large-sample properties of conditional maxi-
mum-likelihood estimators from models 5 , ,O U OOS S cij ij i

, pij and , , 5 , 5 ( )a, , , pij, whereUO O O U U O OO UOc S S S S S c ci i1 i2 i2 i1 i2 i i

the true models are: 5 , , , p.j, and , 5O U OO UO O OS S c c S S.j .j . . .1 2

, 5 ( )a, , , p.j.U U O OO UOS S S c c.2 .1 .2 . .

Para-
meter

S 5 S , c , c , pij
O U OO UO
ij ij i i

Parameter
value† CV (%)

S , S 5 S , S 5 (S )a,O O U U O
i1 i2 i2 i1 i2

c , c , pij
OO UO
i i

Parameter
value‡ CV (%)

S , SO U
11 11

S , SO U
12 12

0.90, 0.90
0.78, 0.78

11.69
19.77

0.84, 0.93
0.83, 0.83

33.81, 21.78
21.78, 21.78

S , SO U
21 21

S , SO U
22 22

S , SO U
31 31

S , SO U
32 32

S , SO U
41 41

cOO
1

cOO
2&3

0.90, 0.90
0.78, 0.78
0.90, 0.90
0.78, 0.78
0.90, 0.90

0.40
0.40

12.52
22.24
12.28
26.59
12.55
24.54
22.6§

0.84, 0.93
0.83, 0.83
0.84, 0.93
0.83, 0.83
0.84, 0.93

0.60
0.60

34.88, 23.39
23.39, 23.39
35.19, 31.68
31.68, 31.68
34.51, 31.68

39.50
36.40§

cUO
2&3

p12

p21

p22

p31

p32

p41

0.60

0.95

0.90

0.95

0.90

0.95

0.90

35.99§

10.60

15.42

11.57

14.14

12.58

13.78

0.40

0.95

0.90

0.95

0.90

0.95

0.90

54.04§

10.35

14.21

10.74

13.81

10.94

13.49

Notes: Properties are based on 1000 unmarked animals en-
tering the area in i 5 1 and 500 every season thereafter (i 5
2, 3, 4); a is the proportion of time spent inside the common
area to outside the common area, a 5 14/38. All estimators
are unbiased to at least the fifth decimal place. Parameters
are defined as follows: S 5 probability that an animal in stater

ij

r at sampling time i, j survives until the next sampling time
(S corresponds to the time that animals may be within ther

i1

common area, S corresponds to the time that animals are notr
i2

in the common area); c are transition probabilities, definedrs
i

as the probability that an animal in state r at time i is in state
s at time i 1 1, given that the animal survived from i to i 1
1; states, r, are either observable (O) or unobservable (U);
pij is the probability that an animal is captured or detected
during secondary sample j in primary period i.

† Values of parameters not estimated are: p11 5 0.90; p42

5 0.95; c 5 0.60; c 5 0.60; c 5 0.40.UO UO OO
1 3 3

‡ Values of parameters not estimated are: p11 5 0.90; p42

5 0.95; c 5 0.40; c 5 0.40; c 5 0.60.UO UO OO
1 3 3

§ Based on setting c 5 c and c 5 c .OO OO UO UO
2 3 2 3

We generated expected cell frequencies based on
1000 unmarked animals entering the common area the
first season, i 5 1, and 500 every season thereafter (i
5 2, 3, 4). Capture probabilities were pi1 [ 0.90 and
pi2 [ 0.95. The two sets of survival and transition prob-
abilities were: 5 [ 0.90, 5 [ 0.78,U O U OS S S Si1 i1 i2 i2

[ 0.40, [ 0.60, and [ 0.84, 5OO UO O Uc c S Si51,2,3 i51,2,3 i1 i2

[ 0.83 and 5 ( )a, a 5 14/38, [ 0.60,O U O OOS S S ci2 i1 i2 i51,2,3

[ 0.40. These values were chosen to be repre-UOci51,2,3

sentative of drift fence studies of pond-breeding am-
phibians. We analyzed the generated expected fre-
quencies using the modified version of the program
MSSURVIV.

Results: analytical–numerical approach

In a four-season study, our most general model ( ,OSij

, , , pij) contains 28 potential parameters, butU OO UOS c cij i i

this model is overparameterized. As mentioned above,
there is no information in the data to estimate p11,

, or . Parameters of reduced models become es-r UOS cK2 1

timable if survival probabilities of unobservable ani-
mals are modeled as a function of survival probability
for observable animals, such as the two survival sit-
uations discussed in the preceding section. In addition,
there is some confounding between the last transition
and survival probabilities. To avoid this confounding,
we either set the last two transition probabilities equal,

5 and 5 , or made survival orOO OO UO UOc c c cK21 K22 K21 K22

transition parameters constant over time. The last time-
specific survival and detection probabilities are also
confounded. Thus the most general models where pa-
rameters are fully estimable are ( 5 , , , pij)U O OO UOS S c cij ij i i

and ( , 5 , 5 ( )a, , , pij). Notice thatO O U U O OO UOS S S S S c ci1 i2 i2 i1 i2 i i

four seasons of sampling are necessary to estimate
, unless constant survival is assumed. ResultingUOci

maximum likelihood estimates and standard errors rep-
resent approximate expected values and standard errors
of the estimators, provided Rij is large. There is no bias
in the estimators and coefficients of variation (esti-
mated standard error/estimate 3 100) are well below
100% for all estimators (Table 1).

EXAMPLE

We use the methods described above to estimate sur-
vival, capture, and breeding probabilities for a popu-
lation of male eastern tiger salamanders (Ambystoma
tigrinum tigrinum) from a single pond in Augusta
County, Virginia, USA. This species is listed as en-
dangered in Virginia. Males migrate to the pond in the
fall or early winter and remain in the pond for several
months before returning to the forest in March or April
(D. Church, unpublished data). The pond is ephemeral,
usually drying in the summer, thus no salamanders re-
main at the breeding site year-round. Males of this
population are known to skip breeding seasons and the
length of time spent in the pond varies among seasons.
Therefore, it is unreasonable to assume demographic

closure or that breeding probabilities are completely
random or constant across time.

Field methods

Data were collected from August 1999 through April
2003 using drift fences constructed with aluminum
flashing buried 10 cm into the soil and extending 50
cm above the ground. Pitfall traps (19-L plastic buck-
ets) were buried every 10 m on both sides of the fence.
Traps were opened and monitored daily throughout the
breeding season. Adults were digitally photographed
at each capture as a method of identification. Males are
easily distinguished by swollen cloacae and have pro-
portionately longer tails than females (Petranka 1998).
All individual capture events were stored electronically
according to the date of capture, and capture histories
were constructed by matching an adult’s unique color
pattern (see D. Church [2003] for more details).
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TABLE 2. Summary of the fit and selection statistics for the top 10 models for eastern tiger
salamander (Ambystoma tigrinum tigrinum) data.

Model Log-likelihood K AICc DAICc w

S 5 S , S 5 S , c 5 c , p.
O U O U OO UO
i1 i1 .2 .2 i i

S 5 S , S 5 S , c 5 c , pij
O U O U OO UO
i1 i1 .2 .2 i i

S 5 S , S 5 S , c , c , p.
O U O U OO UO
i1 i1 .2 .2 i .

S 5 S , S 5 S , c 5 c , p.
O U O U OO UO
i1 i1 .2 .2 . .

S 5 S , S 5 S , c , c , pij
O U O U OO UO
i1 i1 .2 .2 . .

S 5 S , S 5 S , c , c , p.
O U O U OO UO
i1 i1 .2 .2 . .

227.576
222.843
227.355
229.680
223.245
228.765

8
13

9
7

13
8

71.721
73.154
73.424
73.801
73.958
74.099

0
1.433
1.703
2.080
2.237
2.378

0.206
0.101
0.088
0.073
0.067
0.063

S 5 S , S 5 S , c 5 c , pij
O U O U OO UO
i1 i1 .2 .2 . .

S 5 S , S 5 S , c , c , pij
O U O U OO UO
i1 i1 .2 .2 i .

S 5 S , S 5 S , c 5 c , p.
O U O U OO UO
i1 i1 i2 i2 i i

S , S , S 5 f(S ), c , c , pij
O O U O OO UO
i1 i2 ij i2 . .

224.430
222.3587
227.066
227.094

12
14
10
10

74.113
74.418
75.008
75.03

2.392
2.697
3.287
3.344

0.062
0.053
0.040
0.039

Notes: Model selection was based on second-order Akaike Information Criteria (AICc); the
model with the lowest AICc value is considered ‘‘best.’’ DAICc is the difference in AICc values
between each model and the low-AICc model; K is the number of estimated parameters; w is
the Akaike model weight. S is the probability that an animal in state r survives the periodr

i1

corresponding to the time that animals may be within the pond (S corresponds to the timer
i2

that no animals are in the pond). S 5 f(S ) indicates that survival probabilities for nonbreedersU O
ij i2

are a function of the breeder’s terrestrial survival probability only. Transition probabilities,
c , are defined as the probability that an animal in state r at time i is in state s at time i 1 1,rs

i

given that the animal survived from i to i 1 1. States, r, are either observable (O) or unobservable
(U); pij is the probability that an animal is captured during secondary sample j in primary
period i.

Analysis methods

We restricted this analysis to adult males only and
we tested several a priori hypotheses about salamander
population parameters using the program MSSURVIV.
First, we expected survival within the pond to vary
among breeding seasons probably due to changes in
hydroperiod; however, we expected survival probabil-
ities in the terrestrial habitat to remain relatively con-
stant. Damages to fences were repaired rapidly during
the study so we expect capture probabilities to be com-
mon over all sampling occasions. We believe that male
breeding probability is ,1 and largely governed by
environmental factors (Semlitsch et al. 1996), thus we
expected time-specific transition probabilities, but ran-
dom rather than Markovian movement. With these a
priori hypotheses in mind, we constructed 24 candidate
models with the following levels of factors: three levels
of survival probability for breeders (time-specific in
the pond and time-constant in the terrestrial habitat,
time-specific in both habitats, time-constant in both
habitats); four levels of movement probabilities (time-
specific Markovian, time-specific random, time-con-
stant Markovian, time-constant random); and two lev-
els of capture probabilities (time-specific, time-con-
stant).

We also tested whether the data were modeled better
by expressing annual survival probability for non-
breeders as a function of breeder’s terrestrial survival
probability only or by including the breeder’s survival
probabilities in both terrestrial and pond habitats. We
determined the median day salamanders entered and
exited the pond each season and based on those dates,
calculated the number of 2-wk intervals between sam-
pling occasions. These intervals were rounded to the
nearest whole number and inputted into the modified

MSSURVIV program. We fit eight additional models
encompassing the same levels of movement and cap-
ture probabilities listed above, but we set annual sur-
vival probability for nonbreeders as a function of
breeder’s terrestrial survival probability only. These
eight models assume that biweekly survival probabil-
ities are different between habitats, but constant over
breeding seasons. They suggest that survival proba-
bilities in both habitats are time-specific because the
median amount of time spent in each habitat varied
over breeding seasons, but the biweekly survival prob-
ability experienced in the respective habitats is constant
over seasons. With these eight additional models, our
complete model set consisted of 32 models. We com-
pared the candidate models based on Akaike Infor-
mation Criteria (AICc) adjusted for small sample sizes
(Burnham and Anderson 2002). Akaike weights, wi, are
given for each model and are interpreted as a measure
of evidence that the model is the ‘‘best’’ model in the
candidate model set (Burnham and Anderson 2002).
We assessed the relative importance of each parameter
(e.g., time-specific pond survival) by summing Akaike
weights across all models containing the given param-
eter. We also report evidence ratios (the relative support
of one model compared to another) for relevant a priori
hypotheses (Burnham and Anderson 2002).

Results

One hundred and thirty-nine adult male salamanders
were caught and released over the four-year study. The
most general model fits the data well based on Pear-
son’s goodness-of-fit test after pooling cells with small
expected values ( 5 , , , pij: x2 5 0.108, dfO U OO UOS S c cij ij i i

5 2, P 5 0.948) (White 1983). Model selection pro-
cedures suggested that survival within the pond varied
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TABLE 3. Summary of parameter estimates from the top 10 models for the male eastern tiger salamander (Ambystoma
tigrinum tigrinum) example.

Model ŜO
11 ŜO

21 ŜO
31 ŜO

41 ŜU
11

S 5 S , S 5 S , c 5 c , p.
O U O U OO UO
i1 i1 .2 .2 i i

S 5 S , S 5 S , c 5 c , pij
O U O U OO UO
i1 i1 .2 .2 i i

S 5 S , S 5 S , c , c , p.
O U O.2 U OO UO
i1 i1 .2 i .

S 5 S , S 5 S , c 5 c , p.
O U O U OO UO
i1 i1 .2 .2 . .

S 5 S , S 5 S , c , c , pij
O U O U OO UO
i1 i1 .2 .2 . .

0.850
0.867
0.850
0.847
0.859

1.000
1.000
1.000
1.000
1.000

0.384
0.478
0.392
0.389
0.558

0.906
0.905
0.906
0.906
0.905

0.850
0.867
0.850
0.847
0.859

S 5 S , S 5 S , c , c , p.
O U O U OO UO
i1 i1 .2 .2 . .

S 5 S , S 5 S , c 5 c , pij
O U O U OO UO
i1 i1 .2 .2 . .

S 5 S , S 5 S , c , c , pij
O U O U OO UO
i1 i1 .2 .2 i .

S 5 S , S 5 S , c 5 c , p.
O U O U OO UO
i1 i1 i2 i2 i i

S , S , S 5 f(S ), c , c , pij
O O U O OO UO
i1 i2 ij i2 . .

0.847
0.859
0.865
0.850
0.921

1.000
1.000
1.000
1.000
0.931

0.393
0.507
0.518
0.338
0.912

0.906
0.905
0.905
0.906
0.921

0.847
0.859
0.865
0.850
0.839

Model-averaged estimates
(Standard error)

0.863
(0.060)

0.990
(0.172)

0.502
(0.183)

0.908
(0.043)

0.859
(0.058)

Notes: Model-averaged estimates and unconditional standard errors are reported for survival and transition probabilities
based on the full set of candidate models. S is the probability that an animal in state r survives the time period correspondingr

i1

to the time that animals may be within the pond (S corresponds to the time that no animals are in the pond). S 5 f(S )r U O
i2 ij i2

indicates that survival probabilities for nonbreeders are a function of breeder’s terrestrial survival probability only; c arers
i

transition probabilities, defined as the probability that an animal in state r at time i is in state s at time i 1 1, given the
animal survived from i to i 1 1. States, r, are either observable (O) or unobservable (U); pij is the probability that an animal
is captured or detected during secondary sample j in primary period i. Estimates of detection probability are: {p̂12, p̂21, p̂22,
p̂31, p̂32, p̂41} 5 {0.915, 0.964, 0.964, 0.964, 0.764, 0.923}.

among breeding seasons ( ), but survival probabilityOSi1

in the terrestrial habitat was more consistent (Tables 2
and 3). The top model ( 5 , 5 , 5 ,O U O U OO UOS S S S c ci1 i1 .2 .2 i i

p.) was twice as likely as any of the competing models
(Table 2); however, its AICc weight was only 0.206,
indicating considerable model selection uncertainty.
Consequently, we chose to base our inferences on the
entire set of candidate models and used model aver-
aging to calculate a weighted estimate and standard
errors that reflect model uncertainty for all parameters
(multi-model inference; Burnham and Anderson 2002).

Realized survival probabilities within the pond were
highly variable, ranging from 0.502 (SE 5 0.183) dur-
ing the 2002 breeding season ( ) to 0.990 (SE 5 0.172)OŜ31

in 2001( ). All of the top 10 models contained year-OŜ21

specific pond survival probabilities ( ). AkaikeOSi1

weights for models with year-specific pond survival
and constant terrestrial survival totaled 0.788, indicat-
ing that these models constitute 79% of the weight.
The sum of Akaike weights for models with year-spe-
cific survival in both habitats, including models where

5 f( ), was 0.157, while weight sums for modelsU OS Si1 i2

with time-constant survival in both habitats was only
0.055 (Table 2).

Estimates of capture probabilities were high (.0.90)
for all but one sample occasion (Table 3). Consistent
with our a priori prediction, evidence ratios favored
constant capture probabilities (Table 4) despite one
seemingly low estimate during the third sampling sea-
son. Akaike weights for models with constant capture
probabilities (p•) totaled 0.544, but there was also con-
siderable weight for models with time-specific capture
probabilities (pij, weight totaled 0.456)

Model-averaged estimates suggest the probability a
male tiger salamander returns to breed at the same pond
in successive years is only 20–30% ( , , TableOO OOĉ ĉ1 2&3

3). The probability of breeding was higher for non-
breeders in the previous season ( 5 0.451, SÊ 5UOĉ2&3

0.251) than for breeders ( 5 0.205, SÊ 5 0.106;OOĉ1

5 0.286, SÊ 5 0.103), but precision of these es-OOĉ2&3

timates was poor. Small sample sizes likely accounted
for this poor precision and affected our ability to clearly
distinguish between Markovian and random breeding
processes and between time-specific and constant
breeding probabilities (Tables 2 and 4). Total Akaike
weights for models with the four levels of movement
probabilities were: 0.208 for year-specific Markovian
breeding probability ( , ), 0.247 for constantOO UOc ci .

Markovian breeding probability ( , ), 0.376 forOO UOc c. .

year-specific random breeding probability ( 5 )OO UOc ci i

and 0.169 for constant random breeding probability
( 5 ).OO UOc c. .

DISCUSSION

Motivated by practical situations where animals are
captured entering and exiting a common location, we
extended previous temporary emigration models (mul-
tistate mark–recapture models with an unobservable
state) in two ways. First, our model permits estimation
of parameters when state closure within a season can
be assumed, but assumptions of demographic and geo-
graphic closure within a season are relaxed. Previous
open-robust designs assumed demographic closure
over secondary samples (no mortality or true recruit-
ment), but they relaxed the geographic closure as-
sumption allowing for staggered entry and exit from
the common sampling area (Schwarz and Stobo 1997,
Kendall and Bjorkland 2001). Our method relaxes the
assumption of demographic closure by permitting mor-
tality between all sampling occasions. It relaxes geo-
graphic closure to the extent that staggered entry and
exit are permitted, as long as survival probability while
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TABLE 3. Extended.

UŜ21
UŜ31

UŜ41
OŜ.2

OOĉ1
OOĉ2&3

UOĉ2&3

1.000
1.000
1.000
1.000
1.000

0.384
0.478
0.392
0.389
0.558

0.906
0.905
0.906
0.906
0.905

0.914
0.885
0.792
1.000
0.715

0.151
0.152
0.175
0.231
0.258

0.328
0.309
0.353
0.231
0.258

0.328
0.309
0.497
0.231
0.574

1.000
1.000
1.000
1.000
0.857

0.393
0.507
0.518
0.388
0.821

0.906
0.905
0.905
0.906
0.839

0.790
1.00
0.722

0.258
0.209
0.188
0.138
0.235

0.258
0.209
0.335
0.384
0.235

0.511
0.209
0.556
0.384
0.637

0.987
(0.177)

0.498
(0.177)

0.904
(0.046)

0.195
(0.106)

0.294
(0.114)

0.423
(0.239)

in the common area remains similar for each individual.
This can be achieved if survival probability in the com-
mon area is approximately constant for the duration of
the season, and if each individual spends approximately
the same amount of time in the common area. The key
feature common to all forms of the robust design, Pol-
lock’s original design (1982), the open-robust design
(Schwarz and Stobo 1997), or the modified open-robust
design presented here, is state closure within primary
periods. Ultimately, the ability to estimate time-specific
parameters, including transitions to an unobservable
state, comes from exposing each individual in an ob-
servable state to sampling effort at least twice while it
is in the observable state.

The second useful feature of our model is the added
flexibility to express survival probability for individ-
uals in the unobservable state as a function of the sur-
vival probability of observable animals while both are
in the same habitat. This method is intuitively appeal-
ing as it is likely that unobservable animals experience
the same mortality risks as observable animals outside
the common area, but they do not experience the mor-
tality risks encountered by the observable animals in-
side the common area. This is particularly important if
predation risks differ between the two habitats, or if
activities within the common area, such as breeding,
have fitness consequences that affect survival. If ob-
servable animals incur additional mortality during mi-
gration to and from the common area, or if activities
in the common area have residual effects on survival,
then survival probabilities of unobservable animals
could be still be underestimated. At this time, survival
differences among ‘‘observable’’ and ‘‘unobservable’’
populations can only be tested effectively if individuals
are sampled outside of the common area (Cam et al.
1998, Kendall and Nichols 2002). Limited simulations
suggest several scenarios where parameter estimation
is robust to violations of the assumption of equal sur-
vival probabilities for observable and unobservable an-
imals, but a more comprehensive investigation is still
needed to draw meaningful generalizations (W. L. Ken-
dall and C. S. Jennelle, unpublished data). Parameter
estimates in our salamander example (excluding sur-

vival) were similar for models that assumed equal sur-
vival probabilities in all time periods in contrast to
models where unobservable survival probabilities were
expressed as a function of only the observable survival
probability outside the pond.

Capture–recapture models are rarely used to analyze
drift-fence data and use of the sampling technique is
often discouraged because of varying capture efficien-
cy among individuals and species (Dodd 1991, Dodd
and Scott 1994). Imperfect capture probability, togeth-
er with the presence of ‘‘non-breeding’’ or ‘‘skipped
breeding seasons’’ can bias commonly used ad hoc
estimators for survival and breeding probabilities (An-
derson et al. 1981, Martin et al. 1995). The few cap-
ture–recapture analyses that do exist for pond-breeding
amphibians utilized classic open-population models
(i.e., one sample occasion per season). These analyses
either ignored transitions to unobservable states (Gill
1985, Nichols et al. 1987), or accounted for the tran-
sitions but assumed that some parameters were constant
across time (B. R. Schmidt, O. Gimenez, R. Pradel,
and M. Schaub, unpublished manuscript). Schaub et al.
(2004) revealed an unusual exception where time-spec-
ificity in all parameters can be maintained if more than
one group (e.g., sex) is considered (Models 17 and 18
in their paper), but precision of parameter estimates is
likely poor. Both Kendall and Nichols (2002) and
Schaub et al. (2004) strongly recommend Pollock’s ro-
bust design for studies involving unobservable states,
but no previous study has exploited the unique sample
design (drift fence) common to many pond-breeding
amphibian studies.

Our purpose was to create a model whose assump-
tions matched both our biological understanding of the
system and the sampling design. For pond-breeding
amphibians sampled using a drift fence we felt that (1)
survival within the pond is likely ,1.0 for most species
and sexes and may differ among breeding seasons due
to variation in time spent in the pond and the pond’s
hydrology; (2) capture probability is likely ,1.0 for
most species and could vary among sampling occasions
due to factors such as fence condition; and (3) tem-
porary emigration, or conversely breeding probability,
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TABLE 4. AICc values and evidence ratios for a priori hypothesis involving capture and transition probabilities.

Parameter used
in hypothesis Models tested (H0 vs. Ha)

Model AICc values

H0 Ha

Model weights

w0 wa

Evidence
ratio

Capture probability

Transition probability (Time-sp)

Transition probability
(Random vs. Markovian)

(S 5 S , S 5 S , c 5 c , p.) vs.O U O U OO UO
i1 i1 .2 .2 i i

(S 5 S , S 5 S , c 5 c , pij)O U O U OO UO
i1 i1 .2 .2 i i

(S 5 S , S 5 S , c 5 c , p.) vs.O U O U OO UO
i1 i1 .2 .2 . .

(S 5 S , S 5 S , c 5 c , p.)O U O U OO UO
i1 i1 .2 .2 i i

(S 5 S , S 5 S , c 5 c , p.) vs.O U O U OO UO
i1 i1 .2 .2 i i

(S 5 S , S 5 S , c , c , p.)O U O U OO UO
i1 i1 .2 .2 i .

71.721

73.801

71.721

73.154

71.721

73.424

0.206

0.073

0.206

0.101

0.206

0.088

2.040

0.354

2.341

Notes: We report evidence ratios for each hypothesis using the lowest AICc model (S 5 S , S 5 S , c 5 c , p.).O U O U OO UO
i1 i1 .2 .2 i i

Evidence ratios, calculated as w0/wa, represent the relative likelihood of the reduced model, representing the null hypothesis
(H0) vs. the more general model, representing the alternative hypotheses (Ha).

is likely time specific for populations of most species
and could be either a random process possibly governed
by environmental factors or a first-order Markovian
process, where an individual’s probability of breeding
depends on whether it bred in the previous season.

The data we analyzed for the eastern tiger salaman-
der were obtained from a small, relictual population of
conservation concern in Virginia (Church et al. 2003).
We had relatively few captured individuals compared
to many pond-breeding amphibian studies, where hun-
dreds or thousands of individuals are captured and
marked (Gill 1978, 1985, Semlitsch et al. 1996, Tren-
ham et al. 2000). Despite small sample sizes, we were
able to estimate important demographic parameters
with reasonable precision. Male survival probabilities
within the pond were ,1.0 and varied considerably
among breeding seasons, probably due to variation in
the pond’s hydrology and duration of freezing weather.
Well-maintained fences successfully captured most in-
dividuals, but capture probabilities were not perfect
(1.0) and there was some evidence that capture prob-
abilities varied among sampling occasions. This em-
phasizes the importance of estimating rather than ig-
noring this ‘‘nuisance’’ parameter. Model-averaged es-
timates of breeding probabilities suggest that males of
this population often ‘‘skip’’ breeding opportunities.
Males that are currently absent from the breeding pond
tend to have a higher probability of returning in the
next season than males that are currently breeders (a
pattern that might suggest a cost of breeding for males).
Our estimates of breeding probabilities should be in-
terpreted cautiously because (1) they were the least
precise of all model parameter estimates and (2) only
a single estimate of the transition probability from non-
breeder to breeder ( ) is possible with only fourUOc2&3

seasons of data. Church (2003) presents an extended
analysis of these data, including both sexes of sala-
manders and movements among three ponds.

Robust design MSMR models presented in this paper
provide several advantages compared to traditional ad
hoc approaches, such as life table methods that depend
on untested assumptions. First, it is possible to test
hypotheses and assumptions in a common statistical
framework. Model selection using Akaike’s Informa-
tion Criterion allow for comparison among non-nested

competing models with varying biological interpreta-
tions. Basic demographic parameters are estimated di-
rectly and can be compared among studies with dif-
ferent levels of sampling effort. Furthermore, param-
eter estimates obtained from MSMR models can be
employed by population matrix models to assess pop-
ulation viability and parameter sensitivity or evaluate
possible management actions (Nichols et al. 1992, Biek
et al. 2002, Fujiwara and Caswell 2002a, Vonesh and
Cruz 2002). For these reasons, we recommend using
MSMR models to analyze drift-fence data with marked
individuals.

In this paper, we develop a modified open-robust
design for use when records are kept of animals en-
tering and exiting a pond or common area. Several
other authors (Fujiwara and Caswell 2002b and cita-
tions within, Kendall and Nichols 2002, Schaub et al.
2004) have explored models useful in situations with
only one sample occasion per season (standard open-
population design). Obtaining mark-recapture infor-
mation via drift fence sampling is laborious, thus data
should be analyzed as completely as possible.

Our model assumes no heterogeneity among indi-
viduals that cannot be attributed to variations among
groups (e.g., age, sex) or to covariates (e.g., size). If
such attributes are relevant, then the number of states
is increased to incorporate the additional source(s) of
variation (Nichols et al. 1994). The MARK program
(White and Burnham 1999) accommodates group and
covariate information easily, thus we recommend using
it when exploring more complicated relationships in-
volving several groups or covariates. Problems may
also arise if there is considerable heterogeneity in time
spent in the common area, if survival probability within
the common area changes radically within the sampling
season, or if individuals stay within the common area
for multiple seasons (e.g., over winter). Investigators
should use prior knowledge about the natural history
of the system as well as arrival and departure dates of
individuals to determine the appropriateness of these
model assumptions. If necessary, sampling design
changes (e.g., sampling within the breeding pond)
could accommodate within-season variation in survival
probability within the common area.
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The flexibility of our modeling approach has several
practical implications for studies of pond-breeding spe-
cies. Because our methods allow estimation of p, the
probability of capture (or resighting), rather than as-
suming that p 5 1.0 or is constant across time or spe-
cies, drift fences would not need to completely encircle
the pond. If necessary, gaps in fences could even be
left open and traps closed at times during the breeding
season to minimize mortality risk when they cannot be
checked regularly, provided this act does not introduce
heterogeneity in capture probabilities.

We believe that the MSMR methods presented here
could be applied to a variety of different taxa where
individuals are captured or detected entering and ex-
iting a common area. Possible applications include bats
entering roosts or hibernacula (O’Shea et al. 2003 and
citations within), snakes overwintering in common hi-
bernacula (Prior et al. 2001), and anadromous fish mi-
grating to spawning grounds (Sulak and Clugston 1999,
Fox et al. 2000). MSMR methods could also be em-
ployed in studies of pond turtles, but simultaneous ra-
diotelemetry would be necessary to separate breeding
and movement probabilities since both processes occur
outside the pond (i.e., between primary periods; Wilbur
1975, Congdon and Gibbons 1996).

We are in the process of extending theory presented
here to accommodate systems with more than one pond
or site. We envision MSMR models that estimate be-
tween-pond movement probabilities as well as pond-
specific capture and breeding probabilities. We believe
these models hold great promise for exploring and test-
ing hypotheses about metapopulation dynamics as well
as studies of selection on life histories.

ACKNOWLEDGMENTS

J. Nichols provided vital discussion and reviewed earlier
drafts of the manuscript. We thank J. Hines for assistance in
modifying the MSSURVIV program. The Virginia Depart-
ment of Game and Inland Fisheries issued a permit for the
fieldwork on Ambystoma tigrinum tigrinum, an endangered
species in the state.

LITERATURE CITED

Anderson, D. R., A. P. Wywialowski, and K. P. Burnham.
1981. Tests of the assumptions underlying life table meth-
ods for estimating parameters from cohort data. Ecology
62:1121–1124.

Arnason, A. N. 1972. Parameter estimates from mark–re-
capture experiments on two populations subject to migra-
tion and death. Researches on Population Ecology 13:97–
113.

Arnason, A. N. 1973. The estimation of population size, mi-
gration rates, and survival in a stratified population. Re-
searches on Population Ecology 15:1–8.

Biek, R., W. C. Funk, B. A. Maxell, and L. S. Mills. 2002.
What is missing in amphibian decline research: insights
from ecological sensitivity analysis. Conservation Biology
16:728–734.

Brownie, C., J. E. Hines, J. D. Nichols, K. H. Pollock, and
J. B. Hestbeck. 1993. Capture–recapture studies for mul-
tiple strata including non-Markovian transitions. Biomet-
rics 49:1173–1187.

Burnham, K. P. 1993. A theory for combined analysis of ring
recovery and recapture data. Pages 199–214 in J. D. Le-
breton and P. M. North, editors. Marked individuals in the
study of bird populations. Birkhauser-Verlag, Basel, Swit-
zerland.

Burnham, K. P., and D. R. Anderson. 2002. Model selection
and multimodel inference. Second edition. Springer-Verlag,
New York, New York, USA.

Burnham, K. P., D. R. Anderson, G. C. White, C. Brownie,
and K. H. Pollock. 1987. Design and analysis methods for
fish survival experiments based on release–recapture.
Monograph 5. American Fisheries Society, Bethesda,
Maryland, USA.

Cam, E., J. E. Hines, J. Y. Monnat, J. D. Nichols, and E.
Danchin. 1998. Are adult nonbreeders prudent parents?
The Kittiwake model. Ecology 79:2917–2930.

Church, D. R. 2003. Cost of reproduction in a variable en-
vironment of the eastern tiger salamander (Ambystoma ti-
grinum tigrinum). Dissertation. University of Virginia,
Charlottesville, Virginia, USA.

Church, S. A., J. M. Kraus, J. C. Mitchell, D. R. Church, and
D. R. Taylor. 2003. Evidence for multiple pleistocene re-
fugia in the postglacial expansion of the eastern tiger sal-
amander, Ambystoma tigrinum tigrinum. Evolution 57:372–
383.

Congdon, J. D., and J. W. Gibbons. 1996. Structure and dy-
namics of a turtle community over two decades. Pages 137–
159 in M. L. Cody and J. A. Smallwood, editors. Long-
term studies of vertebrate communities. Academic Press,
San Diego, California, USA.

Dodd, C. K. 1991. Drift fence-associated sampling bias of
amphibians at a Florida sandhills temporary pond. Journal
of Herpetology 25:296–301.

Dodd, C. K., and D. E. Scott. 1994. Drift fences encircling
breeding sites. Pages 125–130 in W. R. Heyer, M. A. Don-
nelly, R. W. McDiarmid, L. C. Hayek, and M. S. Foster,
editors. Measuring and monitoring biological diversity:
standard methods for amphibians. Smithsonian Institution,
Washington, D.C., USA.

Fox, D. A., J. E. Hightower, and F. M. Paruka. 2000. Gulf
sturgeon spawning migration and habitat in the Choctaw-
hatchee River system, Alabama–Florida. Transactions of
the American Fisheries Society 129:811–826.

Fujiwara, M., and H. Caswell. 2002a. Estimating population
projection matrices from multi-stage mark–recapture data.
Ecology 83:3257–3265.

Fujiwara, M., and H. Caswell. 2002b. A general approach to
temporary emigration in mark–recapture analysis. Ecology
83:3266–3275.

Gill, D. E. 1978. Meta-population ecology of red-spotted
newt, Notophthalmus viridescens (Rafinesque). Ecological
Monographs 48:145–166.

Gill, D. E. 1985. Interpreting breeding patterns from census-
data—a solution to the Husting dilemma. Ecology 66:344–
354.

Hels, T. 2002. Population dynamics in a Danish metapopu-
lation of spadefoot toads Pelobates fuscus. Ecography 25:
303–313.

Kendall, W. L. 1999. Robustness of closed capture–recapture
methods to violations of the closure assumption. Ecology
80:2517–2525.

Kendall, W. L., and R. Bjorkland. 2001. Using open robust
design models to estimate temporary emigration from cap-
ture–recapture data. Biometrics 57:1113–1122.

Kendall, W. L., and J. D. Nichols. 1995. On the use of sec-
ondary capture–recapture samples to estimate temporary
emigration and breeding proportions. Journal of Applied
Statistics 22:751–762.

Kendall, W. L., and J. D. Nichols. 2002. Estimating state-
transition probabilities for unobservable states using cap-
ture–recapture/resighting data. Ecology 83:3276–3284.



2466 LARISSA L. BAILEY ET AL. Ecology, Vol. 85, No. 9

Kendall, W. L., J. D. Nichols, and J. E. Hines. 1997. Esti-
mating temporary emigration using capture–recapture data
with Pollock’s robust design. Ecology 78:563–578.

Kendall, W. L., K. H. Pollock, and C. Brownie. 1995. A
likelihood-based approach to capture–recapture estimation
of demographic parameters under the robust design. Bio-
metrics 51:293–308.

Lebreton, J. D., T. Almeras, and R. Pradel. 1999. Competing
events, mixtures of information and multistratum recapture
models. Bird Study 46:S39–S46.

Lebreton, J. D., J. E. Hines, R. Pradel, J. D. Nichols, and J.
A. Spendelow. 2003. Estimation by capture–recapture of
recruitment and dispersal over several sites. Oikos 101:
253–264.

Martin, T. E., J. Clobert, and D. R. Anderson. 1995. Return
rates in studies of life history evolution: are biases large?
Journal of Applied Statistics 22:863–875.

Nichols, J. D., G. R. Hepp, K. H. Pollock, and J. E. Hines.
1987. The Husting dilemma—a methodological note. Ecol-
ogy 68:213–217.

Nichols, J. D., J. E. Hines, K. H. Pollock, R. L. Hinz, and
W. A. Link. 1994. Estimating breeding proportions and
testing hypotheses about costs of reproduction with cap-
ture–recapture data. Ecology 75:2052–2065.

Nichols, J. D., J. R. Sauer, K. H. Pollock, and J. B. Hestbeck.
1992. Estimating transition probabilities for stage-based
population projection matrices using capture–recapture
data. Ecology 73:306–312.

O’Shea, T. J., M. A. Bogan, and L. E. Ellison. 2003. Mon-
itoring trends in bat populations of the United States and
territories: status of the science and recommendations for
the future. Wildlife Society Bulletin 31:16–29.

Pechmann, J. H. K., D. E. Scott, R. D. Semlitsch, J. P. Cald-
well, L. J. Vitt, and J. W. Gibbons. 1991. Declining am-
phibian populations—the problem of separating human im-
pacts from natural fluctuations. Science 253:892–895.

Petranka, J. W. 1998. Salamanders of the United States and
Canada. Smithsonian Institution Press, Washington, D.C.,
USA.

Pollock, K. H. 1982. A capture–recapture design robust to
unequal probability of capture. Journal of Wildlife Man-
agement 46:752–757.

Prior, K. A., G. Blouin-Demers, and P. J. Weatherhead. 2001.
Sampling biases in demographic analyses of black rat
snakes (Elaphe obsoleta). Herpetologica 57:460–469.

Schaub, M., O. Gimenez, B. R. Schmidt, and R. Pradel. 2004.
Estimating survival and temporary emigration in the mul-
tistate capture–recapture framework. Ecology 85:2107–
2113.

Schwarz, C. J., J. F. Schweigert, and A. N. Arnason. 1993.
Estimating migration rates using tag-recovery data. Bio-
metrics 49:177–193.

Schwarz, C. J., and W. T. Stobo. 1997. Estimation temporary
migration using the robust design. Biometrics 53:178–194.

Semlitsch, R. D. 2000. Principles for management of aquatic-
breeding amphibians. Journal of Wildlife Management 64:
615–631.

Semlitsch, R. D., D. E. Scott, J. H. K. Pechmann, and J. W.
Gibbons. 1996. Structure and dynamics of an amphibian
community: evidence from a 16-year study of a natural
pond. Pages 217–244 in M. L. Cody and J. A. Smallwood,
editors. Long-term studies of vertebrate communities. Ac-
ademic Press, San Diego, California, USA.

Sulak, K. J., and J. P. Clugston. 1999. Recent advances in
life history of Gulf of Mexico sturgeon, Acipenser oxyrin-
chus desotoi, in the Suwannee river, Florida, USA: a syn-
opsis. Journal of Applied Ichthyology-Zeitschrift für An-
gewandte Ichthyologie 15:116–128.

Trenham, P. C., H. B. Shaffer, W. D. Koenig, and M. R.
Stromberg. 2000. Life history and demographic variation
in the California tiger salamander (Ambystoma califor-
niense). Copeia 2000:365–377.

Vonesh, J. R., and O. De la Cruz. 2002. Complex life cycles
and density dependence: assessing the contribution of egg
mortality to amphibian declines. Oecologia 133:325–333.

White, G. C. 1983. Numerical estimation of survival rates
from band-recovery and biotelemetry data. Journal of Wild-
life Management 47:716–728.

White, G. C., and K. P. Burnham. 1999. Program MARK:
survival estimation from populations of marked animals.
Bird Study 46:S120–S139.

Wilbur, H. M. 1975. The evolutionary and mathematical de-
mography of the turtle Chrysemys picta. Ecology 56:64–
77.


