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Abstract. Matrix population models are important tools for research and management
of populations. Estimating the parameters of these models is an important step in applying
them to real populations. Multistate capture–recapture methods have provided a useful
means for estimating survival and parameters of transition between locations or life history
states but have mostly relied on the assumption that the state occupied by each detected
animal is known with certainty. Nevertheless, in some cases animals can be misclassified.
Using multiple capture sessions within each period of interest, we developed a method that
adjusts estimates of transition probabilities for bias due to misclassification. We applied
this method to 10 years of sighting data for a population of Florida manatees (Trichechus
manatus latirostris) in order to estimate the annual probability of transition from non-
breeding to breeding status. Some sighted females were unequivocally classified as breeders
because they were clearly accompanied by a first-year calf. The remainder were classified,
sometimes erroneously, as nonbreeders because an attendant first-year calf was not observed
or was classified as more than one year old. We estimated a conditional breeding probability
of 0.31 6 0.04 (estimate 6 1 SE) when we ignored misclassification bias, and 0.61 6 0.09
when we accounted for misclassification.

Key words: breeding probabilities; capture–resighting models; Florida; manatee; Markovian
transition probabilities; multistate models; photo identification; Pollock’s robust design; survival prob-
abilities; Trichechus manatus.

INTRODUCTION

Matrix population models can often be useful to pop-
ulation and evolutionary ecologists, conservation bi-
ologists, and wildlife managers, for describing or pre-
dicting the dynamics of a population over time (e.g.,
Tuljapurkar 1990, Caswell 2001). Within these models,
animals are assigned a state at each point in time. In
some cases, transitions between states occur determin-
istically, as with age-based models such as Leslie ma-
trices (Bernardelli 1941, Lewis 1942, Leslie 1945,
1948). We refer to age transitions as deterministic, be-
cause once an animal’s age is known for any time pe-
riod, its age at all previous and subsequent time periods
is known with certainty. In contrast, with stage-based
models (e.g., Lefkovitch 1965, Goodman 1969, Crouse
et al. 1987), transitions are not obligatory at each time
step, and transition parameters can be treated as ex-
pected proportions (fixed proportions of the animals in
a given state that survive the subsequent time step make
prescribed transitions) or probabilities (each animal
‘‘flips a coin’’ or series of coins at each point in time
to determine whether or not it makes a transition to a
different state).

If the intent is to apply a model to a real population,
then values for the parameters of the model need to be
determined or estimated from field data (Nichols et al.
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1992). Multistate capture–recapture statistical models
are a relatively recent development for estimating these
parameters when detection of individuals is less than
certain. Arnason (1972, 1973) pioneered this devel-
opment for animals that can move among different sam-
pled locations, and Nichols et al. (1992, 1994) noted
that this class of models could also be useful for ani-
mals making transitions among a finite number of phys-
iological or behavioral states. The early models of Ar-
nason (1972, 1973) were generalized by Brownie et al.
(1993) and Schwarz et al. (1993), and appropriate soft-
ware was developed (Hines 1994, White and Burnham
1999). These advances have resulted in many appli-
cations of multistate capture–recapture models, as re-
viewed recently by Lebreton and Pradel (2002). These
models and subsequent applications all assume that, in
each case, the true state of an encountered animal is
known with certainty. The only exception to this gen-
eral statement involves estimation methods developed
for the case in which a member of the population might
occupy an unobservable state (e.g., it is in a location
that is not exposed to capture efforts; see review in
Kendall and Nichols [2002]).

Despite the appeal of multistate models for estima-
tion of state transition probabilities, there are many
cases in which an animal can be observed but its current
state is unknown, or is not known with certainty. For
example, the young of many species cannot be sexed
without internal examination or genetic analysis of
blood or tissue. For some species, such as Sandhill
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Cranes (Grus canadensis), this sexual monomorphism
continues throughout life, and the only external way
to assign sex is either indirectly through morphomet-
rics, or directly through behavioral cues such as court-
ship displays (S. Nesbitt, personal communication).
Often state is defined by reproductive activity, and in-
dividuals observed in certain activities (e.g., birds in-
cubating on nests) can be unambiguously assigned to
the ‘‘breeder’’ state, but nonbreeders are difficult to
identify with certainty.

Despite the fact that uncertainty in state assignment
is a common phenomenon in capture–recapture studies,
there has been relatively little statistical work on this
issue. An ad hoc approach to this problem is to define
an additional state and label it as ‘‘unknown’’ or ‘‘un-
certain’’ (e.g., Wood et al. 1998, Conroy et al. 1999).
An animal would be assigned to this state unless its
true state could be assigned with certainty. However,
this uncertain state would consist of a mixture of true
states (e.g., males and females). The resulting hetero-
geneity in demographic or sampling parameters could
cause bias problems in estimates of interest. Lebreton
and Pradel (2002) considered the problem of uncertain
state assignment and outlined a general approach to the
problem. Fujiwara and Caswell (2002) developed an
approach that uses assignment probabilities that are
assumed to be known from other sources of informa-
tion. In this paper, we also use extra information avail-
able by trapping at two different temporal scales, under
the robust design of Pollock (1982), and we develop a
joint likelihood that incorporates the uncertainty as-
sociated with estimates of assignment or classification
probabilities obtained from this additional information.

Specifically, we focus on estimation problems as-
sociated with developing a stage-based population pro-
jection model of Florida manatees (Trichechus manatus
latirostris), although we believe that the generalities
and some of the specifics of this case could be applied
to many other taxa. Here the state of interest is female
breeding status, and the principal question is ‘‘given
that an adult female did or did not produce a calf last
year, what is the probability that she produces a calf
this year?’’ In this photo-identification study of natu-
rally marked individuals, an adult female’s breeding
status is determined by whether or not she has a first-
year calf with her when she is sighted. The crux of the
problem is this: there is a chance that the calf will not
be visible, even when its mother is, thus causing the
female to be classified as a nonbreeder when, in fact,
she is a breeder. We will first outline the design of an
ongoing sight–resighting study of manatees. We will
then present an analysis of these data using the Ar-
nason-Schwarz multistate estimation method, ignoring
the misclassification problem previously described. Fi-
nally, we will outline our robust design approach for
simultaneously estimating and adjusting for this prob-
ability of misclassification, using multiple sighting pe-
riods within each year. We will compare estimates of

survival rates and conditional breeding probabilities
with and without this adjustment.

MANATEE MARK–RESIGHTING STUDY

Field methods and initial data selection

The manatee study population occurs along the north
Gulf coast of Florida, USA. In winter (November–Feb-
ruary) when waters turn cold, individuals in the region
converge on two artesian-spring, warm-water refuges,
the Crystal and Homosassa rivers. In warm months
(March–September), individuals disperse south toward
Tampa Bay and west toward Alabama to feed near shore
in estuarine or freshwater habitats (Powell and Rathbun
1984, Rathbun et al. 1995). Mating generally is ob-
served from February to July. Births generally occur
from May to September and only rarely in winter. Ges-
tation is ;12 mo. Litter size is usually one, with calf
dependency of 1–2 yr. Site fidelity to the winter refuges
is high among observed individuals (Rathbun et al.
1995).

Since 1978, the USGS Sirenia Project has annually
photographed and documented sightings at the winter
aggregation sites of known individuals, identified by
distinctive scar patterns and features. Manatees rou-
tinely acquire marks in the wild from nonfatal boat
injuries, fishing line entanglements, and lesions from
fungal infections and cold damage. Slide transparencies
were taken of marks, using underwater cameras fitted
with a wide-angle lens as photographers swam near the
manatees. Photographs were screened yearly for match-
es with known individuals entered in a photo catalog,
the Manatee Individual Photo-identification System
(MIPS). Digitized images and PC-based search tech-
nologies assisted researchers in matching photographs
to cataloged individuals. Data on sex and reproductive
status (with a first-year, second-year, or unknown-age
calf) were collected at each sighting. Beck and Reid
(1995) described the MIPS system and protocols in
detail.

Data used to construct female capture histories were
restricted to sightings only after the individual met
strict MIPS criteria for cataloging and adult status (see
Langtimm et al. [1998] for a complete discussion). The
90-d sampling period each year was defined as 15 No-
vember through 12 February, when females are most
easily photographed at the sites, births are rare, and the
likelihood of weaning is low. A sighting history was
constructed for each female, consisting of its nonsight-
ing (0) during the winter sample or its sighting with
(C) or without (N) a first-year calf for each year of the
study. Females were coded as (C) if they were seen at
least once during the winter sample period with an
attendant first-year calf. Great effort was expended to
age calves and match them with the mother. However,
if reasonable doubt remained about age or association,
a female was assigned to state N. The final data set
consisted of the sighting histories of 120 females from
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TABLE 1. Number of adult female manatees from the northwest Florida population that are sighted each year with (Ri
C),

without (Ri
N), or apparently without (Ri

N9) a first-year calf, that are next sighted t years later with (m ) or without·C
i,i1t

(m ), a first-year calf, respectively.·N9i,i1t

Year
and initial

status

Initial
no. adult
females

No. adult female manatees with or without first-year calf, year i 1 t

m·C
i,i11 m·N9

i,i11 m·C
i,i12 m·N9

i,i12 m·C
i,i13 m·N9

i,i13 m·C
i,i14 m·N9

i,i14 m·C
i,i15 m·N9

i,i15

1984
Ri

C

Ri
N†

Ri
N9

10
6
9

0
0
1

6†
0
4

2
0
1

1
5
2

0
0
0

1
0
1

0
0
0

0
0
0

0
0
0

0
0
0

1985
Ri

C

Ri
N†

Ri
N9

7
6

19

0
4
2

5†
2

14

1
0
0

0
0
2

0
0
0

0
0
0

0
0
0

1
0
0

0
0
0

0
0
0

1986
Ri

C

Ri
N†

Ri
N9

13
5

39

0
0
7

12†
4

24

1
0
0

0
0
4

0
0
0

0
0
1

0
0
0

0
0
0

0
0
1

0
0
0

1987
Ri

C

Ri
N†

Ri
N9

11
12
41

0
5
9

9†
2

22

0
1
1

1
2
3

1
1
0

0
0
0

0
0
0

0
0
1

0
0
0

0
0
0

1988
Ri

C

Ri
N†

Ri
N9

15
9

36

0
6

12

10†
1

15

2
0
0

2
2
6

0
0
0

1
0
1

0
0
0

0
0
0

0
0
0

0
0
1

1989
Ri

C 22 0 12† 3 4 0 1 0 1 0 0
Ri

N†
Ri

N9

10
33

1
7

6
12

0
4

2
2

1
1

0
5

0
0

0
0

0
0

0
0

1990
Ri

C

Ri
N†

Ri
N9

13
12
34

0
3
0

6†
5

14

2
0
9

3
1
6

0
0
0

0
0
2

0
0
0

1
1
0

0
0
0

0
0
2

1991
Ri

C

Ri
N†

Ri
N9

12
6

33

0
2
4

11†
3

21

0
0
0

0
1
4

0
0
0

0
0
1

0
0
0

0
0
0

0
0
0

0
0
1

1992
Ri

C

Ri
N†

Ri
N9

22
11
47

0
2
4

8†
2

19

1
1
1

5
5
7

0
0
0

0
0
0

0
0
0

3
0
3

1
0
0

0
0
1

1993
Ri

C

Ri
N†

Ri
N9

6
8

34

0
1
3

4†
6

16

0
0
0

1
1
4

1
0
1

0
0
1

0
0
0

0
0
2

0
0
0

0
0
0

† Known to be without first-year calf, based on being sighted with first-year calf in the previous year.

winter 1984–1985 through winter 1993–1994. Sighting
data across years are summarized in Table 1.

Estimation ignoring misclassification

Given two states (C, with first-year calf; and N, no
first-year calf), , is the probability that a femaleC NS Si i

with or without, respectively, a first-year calf in pri-
mary sampling period i survives to period i 1 1 and
remains part of the population; and , is theCC NCc ci i

probability that an animal that is with or without, re-
spectively, a first-year calf in primary sampling period

i, and survives from period i to i 1 1, will be with a
first-year calf in period i 1 1.

We applied the Arnason-Schwarz model (see Brown-
ie et al. 1993) to manatee resighting data, using pro-
gram MARK (White and Burnham 1999). The most
general model that we fit was {S(b, T), c(b, T), p(b,
T)}, indicating variation across breeding states (b) and
years (T) in survival, breeding, and detection proba-
bilities (p). We fixed [ 0, because the minimalCCci

interbirth interval is 30 mo for manatees (Lefebvre and
O’Shea 1995). We then evaluated goodness of fit using
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TABLE 2. Number of adult female manatees from the north-
west Florida population of manatees that exhibit the in-
dicated sighting history within each winter, 1984–1985 to
1993–1994.

Year

Sighting histories†

Known with calf

CC CN NC C0 0C

Known without
first-year calf‡

NN N0 0N

1984
1985
1986
1987
1988
1989
1990
1991
1992
1993

2
2
3
4
2
5
4
2

10
3

0
0
2
2
3
1
0
2
2
1

0
2
2
0
3
1
1
0
2
0

4
1
3
3
2

10
5
2
6
1

4
2
3
2
5
5
3
6
2
1

0
1
3
6
3
6
4
2
5
3

3
3
2
5
3
2
7
0
5
1

3
2
0
1
3
2
1
4
1
4

† C and N denote being sighted with or without a first-year
calf, respectively.

‡ Those adult females also sighted in the previous winter
with a first-year calf.

the Pearson test in program MSSURVIV (White 1983,
Hines 1994), pooling for cells with expected values
,2. This yielded a moderate lack of fit and a variance
adjustment factor of 1.87 (x2 5 48, df 5 26), which
we used to compute the Akaike Information Criterion,
adjusted for small sample size and lack of fit, QAICc

(see Burnham and Anderson 1998:53). Based on
QAICc, the best-fitting models by far were {S(.,.),
c(b,.), p(.,T)} with DQAICc 5 0, and {S(b,.), c(b,.),
p(.,T)} with DQAICc 5 0.27. A ‘‘.’’ indicates no var-
iation across breeding state or year; e.g., S(b,.) indicates
that survival probability is different for breeders and
nonbreeders, but is constant across years. Survival and
breeding probability estimates from the former model
were 5 5 0.97 6 0.012 (estimate 6 1 SE) andC Nˆ ˆS S• •

5 0.31 6 0.037, respectively. For the latter model,NCĉ•

5 1.0 6 ,0.001, but SE is unreliable when theCŜ•

estimate is at the extreme of its permissible range), and
5 0.96 6 0.016. Under this model, therefore, femaleNŜ•

manatees that do not reproduce in a given year have a
31% chance of reproducing in the following year. How-
ever, these estimates are based on the incorrect as-
sumption that all sighted adult females are assigned to
the correct breeding state. In reality, some females with
calves were misclassified as females without calves
(see subsequent analyses).

The bias in estimated breeding probability induced
by misclassification of breeders as nonbreeders can ex-
tend beyond reproductive parameters. This misclassi-
fication also implies that estimated survival and sight-
ing probabilities for nonbreeders actually apply to a
mixture of breeders and nonbreeders. This would tend
to bias estimated differences in these parameters be-
tween breeders and nonbreeders. The superior fit of a
model that ignores state-specific differences in survival
rate and sighting probability, as previously noted, could
indicate that the differences are really negligible, or
could instead be an artifact of misclassification.

Adjusting for misclassification bias

To account for misclassification, we use multiple en-
counters with the same female within a year, and ex-
amine the sighting history of that female and her first-
year calf. Then we estimate the probability that a calf
is detected given that it is present, and thereby adjust
breeding probabilities for this detection probability.
Specifically, we need to split the sampling effort (in
this case 90 d of searching) for a given primary period
i (in this case a year) into two or more secondary sam-
pling intervals (see Table 2 for a summary of within-
year sighting histories for the manatee data set). We
assume that the population of adult females and calves
is closed (to additions or deletions) for the duration of
the entire 90-d sampling effort for primary period i.
This use of within-period encounter information to bet-
ter estimate detection probability is the essence of Pol-
lock’s robust design (Pollock 1982). We also assume

that there is no chance that a calf is assigned to the
wrong female.

For the manatee problem, we broke sightings for a
given year into two sampling intervals. Using the no-
tation in Table 3, we illustrate how to adjust for mis-
classification bias in the Appendix, by listing repre-
sentative expected cell frequencies for the between-
years portion of the model for years 1 to 3. As pre-
sented, the model is general, with no restrictions on
transition probabilities. Even for such few periods, the
model is complex. We provide an explanation for two
of the listed cells:

CN C CC C (12d) CN N9E(m ) 5 R (f p 1 f p ).12 1 1 2 1 2

This cell represents those seen as breeders in year 1
and seen as apparent nonbreeders in year 2. The first
term in parentheses on the right-hand side represents
the expected number that breed in the following year
but are mistaken for nonbreeders, whereas the second
term represents the expected number that really are
nonbreeders. For the manatee case, the first term drops
out because we set 5 0. The second cell representsCCc1

those seen as apparent nonbreeders in years 1 and 2,
and constitutes a mixture of breeders and nonbreeders
in each year:

N9N9 N9 NC C(12d) NN NE(m ) 5 R [p (f p 1 f p )12 1 1 1 2 1 2

CC C(12d) CN N1 (1 2 p )(f p 1 f p )].1 1 2 1 2

The first term in brackets represents the number of these
that really are nonbreeders in year 1 (their expected
proportion of the total released as apparent nonbreeders
is denoted by the mixture parameter p1), and the second
term represents the number of these that actually are
breeders in year 1.

One sighting session per year is insufficient to es-
timate the parameters of this model. Therefore, we use
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TABLE 3. Definitions of parameters and statistics for multistate models under the robust design with misclassification.

Notation Definition

Ri
C Number of adult females seen with first-year calf in at least one secondary sampling period in year i.

Ri
N Number of adult females seen in year i known to have no first-year calf (females cannot produce a

new calf two years in a row, so this represents the subset of those seen in year i and also seen with
a first-year calf in year i 2 1).

Ri
N9 Number of adult females seen in primary period i that apparently have no first-year calf (i.e., they

could have one, but none was seen in either secondary sampling period).
mrs

hi Number of adult females seen in year h in state r next seen in year i in state s (e.g., r, s 5 C for with
first-year calf, N for without first-year calf, N9 for apparently without first-year calf).

Xi
Cd(v), Xi

N(v) Number of adult females (seen with first-year calf at least once in year i or known to have no first-year
calf in year i, respectively) with sighting history vi∈Vi across two samples within year i, where v is
series of 0’s (when adult female not seen), C’s (when first-year calf seen with adult female), and N’s
(when adult female seen but no first-year calf seen with her).

Si
C, Si

N Probability that adult female with or without, respectively, first-year calf in primary sampling period i
survives to period i 1 1 and remains part of the population.

ci
CC, ci

NC Probability that adult female with or without, respectively, a first-year calf in primary sampling period
i, and that survives from period i to i 1 1, will be with a first-year calf in period i 1 1.

fi
CC, fi

CN Si
Cci

CC, Si
C (1 2 ci

CC), respectively.
fi

NC, fi
NN Si

Nci
NC, Si

N (1 2 ci
NC), respectively.

pC
ij Probability that adult female alive, in the population, and with a first-year calf is sighted (does not

assume calf is sighted) in secondary sample j of year i.
dC

ij Conditional on an adult female with a first-year calf being seen in sample j of year i, the probability
that her calf is seen with her at that time.

pi
Cd Probability that adult female alive, in the population, and with a calf is sighted with her calf in year i.

For li samples per year, pi
Cd 5 1 2 P (1 2 p d .l C Ci )j51 ij ij

pi
C(12d) Probability that adult female alive, in the population, and with a first-year calf is sighted in year i, but

her calf is not sighted, 5 P (1 2 p 2 P (1 2 p .l li iC(1 2 d) C C Cp d ) )i j51 ij ij j51 ij

pN
ij Probability that adult female alive, in the population, and without a calf is sighted in secondary sample

j of year i.
pi

N Probability that adult female alive, in the population, and without a calf is sighted in year i: Np 5 1 2i

(1 2 p .l NiP )j51 ij

pi Probability that adult female seen and ‘‘released’’ in year i, apparently without a first-year calf, indeed
has no first-year calf.

within-year information to estimate, , , andCd C(12d)p pi i

, thereby permitting the estimation of pi, , ,N CC NCp c ci i i

, and . For two secondary samples in a given year,C NS Si i

conditioning on the number of adult females seen at
least once with a calf in year i (denoted as , spe-.Cm.i

cifically the number of animals observed as with-calf
in year i, regardless of the year and state of last ob-
servation), and assuming that adult sighting probability
and conditional calf sighting probability vary only by
time,

C C C Cp d p di1 i1 i2 i2Cd(CC) ·CE(X ) 5 m (1a)i ·i C C C C[1 2 (1 2 p d )(1 2 p d )]i1 i1 i2 i2

C C C Cp d p (1 2 d )i1 i1 i2 i2Cd(CN) ·CE(X ) 5 m (1b)i ·i C C C C[1 2 (1 2 p d )(1 2 p d )]i1 i1 i2 i2

C C C Cp (1 2 d )p di1 i1 i2 i2Cd(NC) ·CE(X ) 5 m (2a)i ·i C C C C[1 2 (1 2 p d )(1 2 p d )]i1 i1 i2 i2

C C Cp d (1 2 p )i1 i1 i2Cd(C0) ·CE(X ) 5 m (2b)i ·i C C C C[1 2 (1 2 p d )(1 2 p d )]i1 i1 i2 i2

C C C(1 2 p )p di1 i2 i2Cd(0C) ·CE(X ) 5 m (3)i ·i C C C C[1 2 (1 2 p d )(1 2 p d )]i1 i1 i2 i2

Next, conditioning on the number of adult females that
are seen at least once and are known to not have a first-
year calf in year i (denote these as , females ob-CNmi21,i

served in year i that were observed with calf in the
previous year),

N Np pi1 i2N(NN) CNE(X ) 5 m (4a)i i21,i N N[1 2 (1 2 p )(1 2 p )]i1 i2

N Np (1 2 p )i1 i2N(N0) CNE(X ) 5 m (4b)i i21,i N N[1 2 (1 2 p )(1 2 p )]i1 i2

N N(1 2 p )pi1 i2N(0N) CNE(X ) 5 m . (5)i i21,i N N[1 2 (1 2 p )(1 2 p )]i1 i2

Expressions (4) and (5) essentially constitute a con-
ditional Lincoln-Petersen model, as in Kendall et al.
(1997), and for observed breeders, expressions (1)
through (3) constitute an extension of this model. Un-
der this formulation, detection and misclassification
probabilities are estimated from within-year informa-
tion from known breeders and known nonbreeders. The
contribution from apparent nonbreeders is limited to
estimation of survival and breeding probabilities
through between-year detection information, as de-
scribed in the Appendix.

Refined data selection, analysis, and results

We implemented the models for misclassification
just described by developing a modification of program
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TABLE 4. Comparison of fit for models that account for misclassification of adult female
manatees with first-year calves, for the northwest Florida population, 1984–1985 to 1993–
1994. The model is listed if numerical convergence is achieved.

Model
No.

parameters DQAICc†
Akaike
weight‡

S(.,.), c(b,.), p(.,T,.), d(.,.), p(.)
S(.,.), c(b,.), p(.,T,.), d(.,.), p(T)
S(b,.), c(b,.), p(b, T,.), d(.,.), p(T)
S(.,T), c(b,.), p(b, T,.), d(.,.), p(.)
S(.,T), c(b,.), p(b, T,.), d(.,.), p(T)
S(.,T), c(b,.), p(b, T,.), d(.,t), p(T)
S(.,.), c(b,.), p(.,T,.), d(T,.), p(T)
S(b, T), c(b,.), p(b, T,.), d(.,.), p(T)

14
22
33
32
40
41
31
49

0
2.3

10.0
13.7§
14.9
17.0§
17.4
31.3

0.755
0.239
0.005

,0.001

,0.001
,0.001

† Difference in Akaike Information Criterion, adjusted for small sample size and lack of fit
based on a sample size of 708 releases and a variance inflation factor of 1.5.

‡ See Buckland et al. (1997) and Burnham and Anderson (1998).
§ Rounding error limited numerical convergence to one decimal place. Akaike weights were

not computed.

SURVIV (White 1983), and more specifically MSSUR-
VIV (Hines 1994), and call it MSSRVmis.2 We vali-
dated our programming and confirmed the estimability
of all parameters under this new model by analyzing,
as real data, expected cell frequencies under a set of
parameter values. This analytical-numerical approach
is reviewed in Burnham et al. (1987:215).

We considered two secondary sighting sessions per
year, so the resighting histories included a series of C’s
(adult female seen with first-year calf), N’s (adult fe-
male seen without first-year calf), and 0’s (adult female
not seen), two for each year of the study. Equal detec-
tion probabilities for each sighting session within a
season, although not necessary, produce more precise
estimates. Therefore we delineated the time periods
differently for each year to reflect a comparable number
of sightings in each session. We began with a general
model {S(b, T), c(b, T), p(b, T, t), d(T, t), p(T)}, where
T refers to time variation across years and t denotes
time variation across sampling periods within a year.
We then considered versions of this model in which
parameters are constrained equal over breeding state
or time. Unfortunately, we could not fit many of the
more general models (i.e., numerical convergence was
not achieved to at least two decimal places), due to
sparseness of data (Tables 1 and 2). This included all
models in which conditional breeding probability was
time dependent.

We have listed the models that we considered and
could fit, along with a comparison of QAICc values for
each model, in Table 4. QAICc values were based on
a variance inflation factor of 1.5 (computed from a
Pearson goodness-of-fit test as previously described: x2

5 71.1, df 5 41). Based on QAICc, the best-fitting
model was {S(.,.),c(b,.),p(.,T,.),d(.,.),p(.)}. Survival
and conditional breeding probability estimates under
this model were 0.96 6 0.01 (estimate 6 1 SE) and
0.61 6 0.09, respectively. The survival rate estimate

2 URL: ^www.pwrc-mbr.usgs.gov/software&

and its standard error are consistent with our multistate
approach ignoring misclassification, and with Lang-
timm et al. (1998).

The estimate of 0.61 for cNC (breeding probability,
given nonbreeding status in the previous year) from the
best-fitting model contrasts sharply with the estimate
of 0.31 6 0.037 when misclassification is ignored. Calf
detection probability estimates for the best-fitting mod-
el were 5 5 0.72 6 0.07, and average sightingd̂ d̂i1 i2

probability for adults per half-season session was 0.48
6 0.04. This result implies that, on average, there was
a 22% chance that a calf was missed, given that its
mother was sighted in the winter of year i (i.e., on
average / 5 0.22 6 0.05, based on Taylor seriesC(12d) Cp̂ pi i

approximation, where 5 [1 2 (1 2 )(1 2 )],C C Cp p pi i1 i2

the probability that a female with a first-year calf is
sighted at least once in year i).

Extent of bias when misclassification is ignored

These manatee results indicate at least one scenario
in which misclassification of state can cause severe bias
in breeding probabilities. To give more perspective on
this problem, for several sets of parameter values we
generated expected data under the misclassification
model previously described and then analyzed the data
using the Arnason-Schwarz model that ignores mis-
classification, to estimate resulting bias (see Burnham
et al. 1987:215). Table 5 contains parameter values and
expected values for estimators of survival and condi-
tional breeding probability ( ). For simplicity, bothNCci

the model that generated the data and the model used
to analyze the data assumed that 5 0 and that allCCci

parameters were equal over time.
In each case, bias in breeding probability was sub-

stantial. Even for the case in which there was a 90%
chance that a calf was seen each time its mother was
seen, there was still a 15% bias in conditional breeding
probability. These scenarios are not exhaustive and
therefore we do not claim generality, but in each case,
the expected value of the was , ( / ),NC NC Cd Cĉ c p pi i i11 i11
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TABLE 5. Effect of ignoring misclassification of breeding state in the estimation of demo-
graphic parameters (defined in Table 3) using multistate capture–recapture models, based on
a hypothetical five-year study.

Parameter

pC
ij pN

ij dC
ij

Expected value†
NCĉi ŜC

i ŜN
i

A) Survival probability, S 5 0.80N
i

0.60
0.70
0.50

0.70
0.60
0.50

0.50, 0.75
0.50, 0.75
0.50, 0.75

0.406, 0.536
0.393, 0.538
0.385, 0.523

0.798, 0.799
0.797, 0.799
0.795, 0.798

0.801, 0.800
0.803, 0.801
0.804, 0.802

B) Survival probability, S 5 0.65N
i

0.60
0.70
0.50

0.70
0.60
0.50

0.50, 0.75
0.50, 0.75
0.50, 0.75

0.399, 0.526
0.387, 0.528
0.381, 0.520

0.797, 0.798
0.794, 0.797
0.790, 0.796

0.668, 0.666
0.671, 0.667
0.674, 0.661

C) Survival probability, S 5 0.80N
i

0.60 0.60 0.90 0.598 0.800 0.800

Notes: Indicated parameter values are based on a sampling period partitioned into two halves,
but we assume that this is ignored by the estimation method. Breeders survive with probability
Si

C 5 0.8 but do not breed in two consecutive years; nonbreeders breed with probability NCĉi

5 0.7 in the following year. All parameters are assumed constant across time.
† Based on analyzing expected data under model (see Burnham et al. 1987:214).

where the factor in parentheses is the probability that
the calf is seen at some point in year i 1 1, given that
its mother is seen in that year. As expected, estimates
of survival probability were virtually unbiased when
survival was independent of state. When survival prob-
ability was different for breeders and nonbreeders, the
bias was in the predicted direction, but was small for
these cases. We anticipate that all biases indicated here
would be more pronounced if ± 0 or parametersCCci

were allowed to vary across time. An exhaustive eval-
uation of scenarios is impractical here. We suggest that
the practitioner should evaluate scenarios pertinent to
a particular case.

DISCUSSION

We have demonstrated how quite substantial bias in
estimates of population parameters, due to misclassi-
fication of the state of an observed animal, can be cor-
rected using an additional source of information. In
this case, we exploited multiple sampling periods with-
in a season, as in Pollock’s robust design. This is ex-
tremely logical, given that the probability of misclas-
sification is a direct function of the detection proba-
bility of, in this case a first-year calf, in other cases
perhaps a behavior. In addition to the usual assumptions
associated with multistate capture–recapture methods
(see Brownie et al. 1993), we required three others.

First, we assumed that all adult females in the north
Gulf coast population were equally exposed to sighting
effort in each of the two sampling periods per season.
Second, we assumed the population of adult females
and calves was closed for each season. That is, if an
adult female was in the study area for one of the two
sampling periods within a season, then she was there
for both sampling periods within that season. Similarly,
if a female had a first-year calf at all in a given sampling
period, then we assume that the calf was also present

in the other sampling period in that season. Third, we
assumed that a breeder can be misclassified as a non-
breeder, but not the reverse (i.e., a first-year calf that
is seen is not assigned to the wrong mother).

To satisfy these assumptions, we selected a sampling
period when both birth and weaning of a first-year calf
is unlikely, and ignored observations of calves when
age (first-year or older) or parentage was in doubt. In
addition, calf weaning or mortality between the first
and second sampling periods within a season should
not cause bias as long as the probability of weaning or
death is equal for calves seen or not seen in the first
sampling period. As with the Lincoln-Petersen method
(see Seber 1982:70), the probability of weaning or
death is confounded with 1 2 di2, thereby simply low-
ering the effective sighting probability for the calf in
the second period.

This method assumes that some female manatees are
known to be nonbreeders. Due to the long gestation
period, female manatees cannot produce a new calf in
two consecutive years, so this is a reasonable approach.
Although this will not be the case for many species,
the method can be modified to remove this requirement,
perhaps at the cost of precision.

We anticipate that this technique will be useful for
other applications in which misclassification occurs.
For example, some behaviors, such as incubating eggs
on a nest, identify animals as breeders. Cam et al.
(2002) acknowledged that pre-breeding kittiwakes
(Rissa tridactyla) are difficult to partition into squatters
and non-squatters, because squatting behavior is not
consistently displayed. In epidemiological studies of
marked animals, the clinical signs of a disease might
be easy to identify when seen, but in a resighting study,
such signs could be missed by an observer due to view-
ing conditions.
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In their review of multistate models, Lebreton and
Pradel (2002) described a general structure for consid-
ering uncertainty in assigning an animal to a state. They
pointed out that ‘‘Although potentially important, those
multi-event models are likely to suffer from identifi-
ability problems.’’ Here we have solved those identi-
fiability problems by exploiting the assumption that
nonbreeders cannot be misclassified as breeders (i.e.,
for one state, each time an animal occupies that state,
there is a non-negligible chance it will be unambigu-
ously assigned), and by using the robust design to di-
rectly estimate the misclassification probability.
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APPENDIX

Examples of expected cell frequencies for a general model, primary periods 1 to 3. Specifics for manatees, where females
cannot produce a new calf in two consecutive years, can be obtained by dropping terms that contain .CCfi

CC C CC CdE(m ) 5 R f p12 1 1 2

CN9 C CC C(12d) CN NE(m ) 5 R (f p 1 f p )12 1 1 2 1 2

CC C CC Cd C(12d) CC Cd CN N NC CdE(m ) 5 R [f (1 2 p 2 p )f p 1 f (1 2 p )f p ]13 1 1 2 2 2 3 1 2 2 3

CN9 C CC Cd C(12d) CC C(12d) CC Cd C(12d) CN N CN N NC C(12d)E(m ) 5 R [f (1 2 p 2 p )f p 1 f (1 2 p 2 p )f p 1 f (1 2 p )f p13 1 1 2 2 2 3 1 2 2 2 3 1 2 2 3

CN N NN N1 f (1 2 p )f p ]1 2 2 3

NC N NC CdE(m ) 5 R f p12 1 1 2

N9C N9 NC CC CdE(m ) 5 R [p f 1 (1 2 p )f ]p12 1 1 1 1 1 2

NN9 N NN N NC C(12d)E(m ) 5 R [f p 1 f p ]12 1 1 2 1 2

N9N9 N9 NC C(12d) NN N CC C(12d) CN NE(m ) 5 R [p (f p 1 f p ) 1 (1 2 p )(f p 1 f p )]12 1 1 1 2 1 2 1 1 2 1 2

NC N NC Cd C(12d) CC NN N NC CdE(m ) 5 R [f (1 2 p 2 p )f 1 f (1 2 p )f ]p13 1 1 2 2 2 1 2 2 3

NN9 N NC Cd C(12d) CC C(12d) NC Cd C(12d) CN N NN N NC C(12d)E(m ) 5 R [f (1 2 p 2 p )f p 1 f (1 2 p 2 p )f p 1 f (1 2 p )f p13 1 1 2 2 2 3 1 2 2 2 3 1 2 2 3

NN N NN N1 f (1 2 p )f p ]1 2 2 3

N9N9 N NC Cd C(12d) CC C(12d) NC Cd C(12d) CN N NN N NC C(12d)E(m ) 5 R [p {f (1 2 p 2 p )f p 1 f (1 2 p 2 p )f p 1 f (1 2 p )f p13 1 1 1 2 2 2 3 1 2 2 2 3 1 2 2 3

NN N NN N CC Cd C(12d) CC C(12d) CC Cd C(12d) CN N1 f (1 2 p )f p } 1 (1 2 p ) 3 {f (1 2 p 2 p )f p 1 f (1 2 p 2 p )f p1 2 2 3 1 1 2 2 2 3 1 2 2 2 3

CN N NC C(12d) CN N NN N1 f (1 2 p )f p 1 f (1 2 p )f p }].1 2 2 3 1 2 2 3


